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Abstract

The coffee berry borer (CBB, Hypothenemus hampei) is the most serious
insect pest of coffee worldwide; understanding the dynamics of its reproduc-
tion is essential for pest management. The female CBB penetrates the coffee
berry, eats the seed, and reproduces inside it. A mathematical model of
the infestation progress of the coffee berry by the CBB during several coffee
seasons is formulated. The model represents the interaction among five pop-
ulations: uninfested, slightly infested, and severely infested coffee berries,
and free and encapsulated CBBs. Coffee harvesting is also included in the
model. A one-dimensional map is derived for tracking the population dy-
namics subject to certain coffee harvesting percentages over several seasons.
Stability analysis of the map’s fixed points shows that CBB infestation could
be eliminated or controlled to a specific level over multiple seasons of coffee
harvesting. However, the percent of coffee harvesting required is determined
by the level of CBB infestation at the beginning of the first season and in
some cases it is impossible to achieve that percentage.
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One-dimensional map, Pest management

1. Introduction

Coffee exports worldwide are worth around $24 billion, and coffee is a key
part of the economies and cultures of many of the more than 80 countries
that produce it [1]. Infestation of coffee by the coffee berry borer (CBB,
Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae))
causes about $500 million in losses each year [2]. The CBB is now found in
almost all coffee-producing countries and is very difficult to control. Since
its detection in Puerto Rico in 2007, the CBB has colonized the entire coffee-
growing region. Infestation reaches to 95% in some farms, but varies greatly
from year to year [3]. Therefore, there is a great need for, and interest in,
new tools for CBB infestation prediction and management.

The CBB is a very small beetle of ∼ 1.5 mm in length [4]. The female
CBB flies to a coffee fruit, bores a hole to the seed, and lays eggs. The larvae
eat the developing seed, reducing its weight and quality [5–7]. When female
offspring mature they leave and search for a new fruit to colonize. Male
offspring fertilize their sisters but never leave the fruit.

The whole life cycle of the CBB passes within the coffee fruit, except
when females emerge to colonize new fruits. The fruit thus protects the
CBB from control measures. For example, insecticides will only be effective
if they make contact with female CBBs in their brief trip outside the fruit.
Integrated pest management (IPM) seeks to control pests to manageable
levels by combining several approaches: monitoring, the use of resistant crop
varieties, chemical control, biological control, and management of how the
crop is grown, referred as cultural control (management that is location or
country specific that reduces exposure or susceptibility to the pathogen) [8].
Because there are no resistant varieties of coffee and chemical and biological
control are difficult when the CBB is inside the fruit, cultural control is
very important for management. After harvest, all remaining fruits must
be removed because they are a reservoir where the CBB can live until the
next coffee crop is mature enough to infest [9, 10]. Similarly, fallen coffee
fruits on the ground are a reservoir for the CBB and must be collected [3].
These control measures are effective but labor-intensive. Many growers say
they cannot afford to implement them, especially in Hawaii and Puerto Rico
where labor costs are higher than in other coffee-producing countries [11].
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The cultural practice of collection and removal of all ripe and overripe berries
has been documented and recommended in the literature [3, 11–13]. The
purpose of this study is to provide qualitative and quantitative explanations
for this practice and its observed effects in Puerto Rican coffee farms.

Mathematical models of the interactions between coffee fruits and CBB
could be useful for understanding when cultural and biological control mea-
sures would be most effective. The models reveal both qualitative and quanti-
tative features of CBB population when tracked over many seasons. Previous
quantitative studies includes models of the growth and development of coffee
plants [14], CBB and its interaction with the coffee berry, including traps as
a method of cultural control [15], and parasitoids of the CBB [16]. These
models include physiological and environmental factors that affect the repro-
duction rates of the populations, using data from Colombia. Previously a
similar model was used with data from Brazil [17]. The authors used the
age-structured approach, which is needed in these sites because there are at
least two flowering periods per year and thus there may be fruits in different
stages on the same plant at the same time.

In this study, we formulate a multi-season model of the coffee berry infes-
tation by the CBB, which includes fruit harvesting, using data from Puerto
Rico where there is only one flowering period per year. The populations are
assumed homogeneous. A one-dimensional map is derived for tracking the
population dynamics subject to certain annual coffee harvesting percentages
over several seasons. We will show that over a wide set of parameters the
map possesses two stable fixed points and one unstable fixed point. The
stable fixed points correspond to either complete eradication of the CBB or
total infestation by the CBB. The unstable fixed point is a threshold that
separates initial CBB population values that get attracted to one of these
two stable solutions. The ability to determine the threshold value is the pri-
mary advantage of using a map-based approach. Further, if immigration of
CBBs is added at the beginning of each season, then the stable fixed point
corresponding to extinction of CBBs moves to a positive value, which implies
that infestation can be controlled but not eradicated. In short, the map de-
termines whether or not a CBB infestation can be eliminated or controlled
with an appropriate harvesting strategy over several coffee seasons. Our aim
is to provide tools that help coffee growers to manage such practices of pest
control by providing quantitative criteria for applying the measures.
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2. Mathematical model

Assumptions are based on the literature (e.g., [6, 18]) and on our data
from Puerto Rico [3, 19]. We first model the coffee berry1 infestation by the
CBB. To determine the infestation progress, the model tracks the dynam-
ics of interactions among five populations. Each population is represented
in a single and well-mixed compartment. Thus, we are assuming that the
infestation progress is not affected by the spatial dimension. The span of
each season is a year running from May 1st (t = 0), when the berries are
sufficiently developed to be susceptible to infestation by the CBB, to April
30th (t = 364) of the next calendar year.

Then we incorporate the effect of coffee harvesting within a single season.
In every season, the coffee is harvested at day t = th. This can easily be
extended to allow harvesting the total amount in steps over several days.
Because this model assumes homogeneity in space, by harvesting we mean
picking the coffee from the tree and cleaning the ground of coffee fruits.
Removing fallen coffee fruits from the ground is essential for control of the
CBB [9], but it is often overlooked in Puerto Rico and Hawaii [11].

Finally, to model several coffee seasons, we concatenate the seasons by
taking the number of CBBs at the start of each season equal to their number
at the end of the previous season.

2.1. Model assumptions for the annual infestation process

To formulate the model equations we used a population dynamics ap-
proach in which the populations interact as shown in Figure 1. The model
consists of five state variables that are meant to model distinct categories
within two different populations: coffee berries per tree and CBB per tree.
The state variables are: uninfested coffee berries (cu), slightly infested coffee
berries (ci1), severely infested coffee berries (ci2), free CBBs (bo), and en-
capsulated CBBs (be). The characteristics of each variable are the following
(Fig. 1 and Table 1).

1. Uninfested coffee. The uninfested coffee berry population decreases
when it is infested by the CBB at a rate εccubo, where εc is the coffee
berry infestation rate constant.

1We refer to the fruits as “berries” to be consistent with the literature, even though
the term is technically incorrect.
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2. Slightly infested coffee. Once a coffee berry is infested by the CBB, it
passes to the infested state and cannot return to the uninfested state.
In this category we include the coffee that is infested with a single
CBB; the CBB may be laying eggs, but the weight of the seed is close
to that of uninfested coffee. The CBBs reproduce inside the seed and
the seed may become severely infested. The slightly infested coffee
becomes severely infested at a rate εcici1 , where εci is the coffee berry
severe infestation rate constant.

3. Severely infested coffee. Once a coffee berry becomes severely infested,
it contains several CBBs (usually progeny of the colonizing female), has
lost weight and cannot return to the slightly infested state. From these
berries the CBBs can exit to infest other berries. Because of its light
weight, we assume that the coffee in this category is discarded after
harvest (though this is not always the case). Severely infested berries
may be dropped by the plant [20]; this does not affect the model,
because they continue to be severely infested and a source of CBBs on
the ground. It is uncommon for a CBB to attack a coffee fruit already
attacked by another [18]. Given that we see very little evidence of more
than one CBB attacking a single fruit in the field, we have neglected
this aspect in our model.

4. Free CBB. When the insects are outside of coffee berries they don’t
reproduce; their goal is to infest a coffee berry at a rate εbocubo. The free
CBB population increases when encapsulated CBBs exit the severely
infested berries at a rate εbebeci2 . Here εbo and εbe are the CBB entering
and exiting rate constants, respectively. They can die by natural death
or human intervention at a rate δbbo, where δb is the CBB death rate
constant.

5. Encapsulated CBB. Once the insects are inside of coffee berries, they
can reproduce by following a logistic-type model in which the carrying
capacity is limited by the available space inside the severely infested
berry. Thus the reproduction rate is given by ρbbe((κb,t−be)/κb), where
ρb is the CBB reproduction rate constant, κb,t is the CBB carrying
capacity of severely infested coffee (this varies with time as it is a
function of ci2), and κb is the CBB carrying capacity of total coffee (this
is kept fixed to the total amount of coffee). Letting αb be the CBB
carrying capacity of an individual coffee berry, the variable carrying
capacity can be defined by κb,t = αbci2 . Note that, by conservation, the
total amount of coffee is equal to the sum of uninfested and infested
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coffee. Thus as the amount of severely infested coffee increases, the
uninfested coffee decreases. In turn, this implies that the available
resources for CBBs to reproduce are larger but the amount of coffee
that can be infested is smaller. If cT is the total amount of coffee berries
in the season, then the global carrying capacity is κb = αbcT. In the
event of all coffee becoming severely infested, the reproduction rate
limits to the standard logistic growth equation ρbbe(1 − be/κb). Also
the encapsulated CBB population increases when free CBBs infest a
coffee fruit at a rate εbocubo. The encapsulated CBB can exit the berry
to infest another berry2 at a rate εbebeci2.

6. At the harvesting time th, we assume that the three coffee populations
are reduced by the same fraction φ. Since encapsulated CBBs reside in
the infested coffee, we assume their population is also reduced by the
fraction φ.

Because the female CBB is the one that exits the coffee berry to infest another
berry, the model only represents the female CBB population.

2.2. Model equations

Based on the assumptions in Section 2.1 and the diagram in Fig. 1 we
obtain the following system of equations for the rate of change of each pop-
ulation:

dcu
dt

= −εccubo (1)

dci1
dt

= εccubo − εcici1 (2)

dci2
dt

= εcici1 (3)

dbo
dt

= εbebeci2 − εbocubo − δbbo (4)

dbe
dt

= ρbbe

(

ci2
cT

−
be
κb

)

+ εbocubo − εbebeci2 (5)

2Several stimuli may cause a CBB to leave a coffee fruit to colonize a new fruit. Once
a CBB leaves the coffee berry other CBBs and other generations could remain inside
the coffee continuing to reproduce. The carrying capacity of a coffee berry refers to the
maximum number of CBBs that can share the space at a specific moment.
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Figure 1: Diagram of interaction between coffee berry (cu, uninfested; ci1 , slightly infested;
ci2 , severely infested) and CBB (bo, free; be, encapsulated). ρb, CBB reproduction rate
constant; εc, coffee berry infestation rate constant; εci , coffee berry severe infestation rate
constant; εbe

, CBB exiting rate constant; εbo
, CBB entering rate constant; δb, free CBB

death rate constant

with the following prescribed initial values at t = 0:

cu(0) = cT, ci1(0) = 0, ci2(0) = 0, bo(0) = b0o, and be(0) = 0, (6)

where b0o is the initial amount of CBBs in the season.

2.2.1. Equation normalization

We normalize the dependent variables and parameters such that each
population is measured as a proportion and each term of the equations is in
units 1/day. By introducing the following change of variable in the dependent
variables

c̃u =
cu
cT

, c̃i1 =
ci1
cT

, c̃i2 =
ci2
cT

, b̃o =
bo
κb

, b̃e =
be
κb

, (7)

and the parameters

ε̃c = εcκb, ε̃be = εbecT, ε̃bo = εbocT, (8)
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the model equations become

dc̃u
dt

= −ε̃cc̃ub̃o (9)

dc̃i1
dt

= ε̃cc̃ub̃o − εci c̃i1 (10)

dc̃i2
dt

= εci c̃i1 (11)

db̃o
dt

= ε̃be b̃ec̃i2 − ε̃bo c̃ub̃o − δbb̃o (12)

db̃e
dt

= ρbb̃e

(

c̃i2 − b̃e

)

+ ε̃bo c̃ub̃o − ε̃be b̃ec̃i2 (13)

By adding Equations (9) to (11), one finds that c̃u + c̃i1 + c̃i2 = 1, and, by
using that c̃i2 = (1− c̃u − c̃i1), the model equations reduce to

dc̃u
dt

= −ε̃cc̃ub̃o (14)

dc̃i1
dt

= ε̃cc̃ub̃o − εci c̃i1 (15)

db̃o
dt

= ε̃be b̃e (1− c̃u − c̃i1)− ε̃bo c̃ub̃o − δbb̃o (16)

db̃e
dt

= ρbb̃e

(

1− c̃u − c̃i1 − b̃e

)

+ ε̃bo c̃ub̃o − ε̃be b̃e (1− c̃u − c̃i1) (17)

with normalized initial values

c̃u(0) = 1, c̃i1(0) = 0, b̃o(0) = b̃0o, and b̃e(0) = 0. (18)

2.2.2. Steady-state solutions of the model

There exist two steady-state solutions of Equations (14)-(17) of biological
interest, the infestation-free steady-state solution characterized by b̃o = 0 and
the infestation steady-state solution by b̃o 6= 0. To find these solutions, we
set the right-hand side of Equation (14)-(17) equal to zero and solve. By
doing so, we obtain the infestation-free steady-state solution as

c̃u = 1, c̃i1 = 0, c̃i2 = 0, b̃o = 0, and b̃e = 0. (19)

And the infestation steady-state solution is

c̃u = 0, c̃i1 = 0, c̃i2 = 1, b̃o =
ε̃be (ρb − ε̃be)

ρbδb
, and b̃e =

ρb − ε̃be
ρb

,

(20)
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which is biologically feasible only if

ρb > ε̃be ≥ 0, and δb > 0. (21)

2.3. Harvesting effect on the dynamics of a single season

We use the assumption that harvesting occurs at t = th to remove a uni-
form fraction φ from the coffee populations as well as the encapsulated CBB
population. Mathematically, we solve Equations (14)-(17) with initial con-
ditions given by Equation (18) until t = th. We then impose the harvesting
condition,

c̃u(t
+
h ) = (1− φ)c̃u(t

−

h ), c̃i1(t
+
h ) = (1− φ)c̃i1(t

−

h ),

and b̃e(t
+
h ) = (1− φ)b̃e(t

−

h ).
(22)

Here the superscripts ± on the harvest time th indicate the limit from above
and below. We then solve Equations (14)-(17) with new initial conditions
given by Equation (22) from t = th until t = 364. Note that the harvesting
condition produces a discontinuity in the graph of the variables c̃u, c̃i1 and
b̃e, but not in b̃o, as the latter population is not harvested. After harvesting,
the conservation equation becomes c̃u + c̃i1 + c̃i2 = 1− φ.

2.4. Population dynamics over multiple seasons

We now describe how to track the coffee berry and CBB populations over
multiple seasons. This will involve the derivation of a one-dimensional map
that determines the free CBB population at the start of each season based
on the previous season’s population dynamics. The first step is to consider
the dynamics over one season. This amounts to solving Equations (14)-(17)
with initial conditions given by Equation (18) until t = th. Then continuing
to solve Equations (14)-(17) with initial conditions given by Equation (22).
Note that in (18), b̃0o appears as a free parameter. Thus the values of the
variables c̃u(364), c̃i1(364), b̃o(364) and b̃e(364) will depend on this initial
choice, as described in Section 3, the Results.

To link the CBB populations from year to year, we set the total CBB
population (free plus encapsulated) at the end of one season to be the free
CBB population at the start of the subsequent season. This assumes that
there is no remaining infested or severely infested coffee at the start of a
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season and only uninfested coffee berries exist3. In other words, at the start
of each season, we assume c̃u = 1, c̃i1 = 0 and b̃e = 0. To make this
mathematically precise, define sn to be the free CBB population at the start
of the nth season. Thus s1 = b̃o(0) + b̃e(0), which because of Equation (18)
implies that s1 = b̃0o. At the start of the next season s2 = b̃o(364) + b̃e(364),
where these values are computed from the single season dynamics that include
harvesting. We then compute the second season population dynamics by
solving Equations (14)-(17) with the free CBB population starting with the
value of s2, uninfested coffee starting at one, the other variables starting at
zero, and with harvesting at t = th. The new value s3 is determined and so
on. This yields a one-dimensional map, sn+1 = f(sn), where the function f
utilizes Equations (14)-(17) as well as the harvesting condition (22) at t = th.
A fixed point s∗ of the map satisfies the equation s∗ = f(s∗). This represents
the case where the free CBB population at the beginning of a season is
exactly equal to the free plus encapsulated CBB population at the end of
that season. The value s∗ = 0 is always a fixed point of this scheme because
if there are no free CBBs at the start of a season there is no way for the CBB
population to grow. This will correspond to the infestation-free steady-state
solution (19). Total extinction of the CBB population is also represented by
the condition s∗ = 0. We will show that another stable fixed point exists
which corresponds to the multi-season with harvesting infestation solution.
Further, we show that an unstable fixed point exists that provides a threshold
between the infestation-free and infestation fixed points. Doing so will allow
us to determine what initial values s1 lead to sequences sn that converge to
s∗ = 0. As we will show in Section 3, understanding how the stable and
unstable fixed points of the one-dimensional map depend on parameters will
help determine conditions which lead to either an extinction or explosion of
the free CBB population.

3This assumption is true if all infested coffee is harvested or falls off the plants, and if
infested berries on the ground decompose before the next season, as has been reported in
Puerto Rico [3, 21]. It is not completely understood how or where the free CBBs survive
between the coffee harvest and the start of the next season; some studies have proposed
alternative hosts as a place of refuge [2, 22], and [23], but since this is not certain they are
not considered here.
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2.5. Model parameters

We use parameter values that are typical for a coffee tree on a farm in
the island of Puerto Rico. A set of parameter values was chosen or estimated
from the literature; another set of parameters was estimated by solving a
least-squares problem to fit the model Equations (14)-(17) to field data.

2.5.1. Parameter values

In Table 1, we show the values of the parameters. The basic unit of
measurement is a tree. We assume that there are 1, 000 coffee berries per
tree [20]. The CBB carrying capacity of a berry is 20 CBBs per berry (though
occasionally this carrying capacity may be exceeded, [19]), which under our
assumptions results in a CBB carrying capacity per tree of 20, 000. In this
model the coffee is harvested at day (th) 184, i.e., November 1st of each year,
[12].

The study of Jaramillo et al. [24] suggests that the CBB reproduction
rate ρb is temperature dependent. For the sake of simplicity, we initially
assume a constant reproduction rate corresponding to an average tempera-
ture of 24◦C. We chose as reproduction rate the developmental rate of egg to
adult reported in Fig. 3 in [24]. In Section 3.5, we will consider temperature
dependence by allowing the reproduction rate to depend on it. It is difficult
to estimate mortality rate in the field because infestation is asynchronous
and sampling is destructive. In the study of Johnson et al. [13], the authors
measured mortality of borers inside dry coffee and found values that ranged
approximately from 7 × 10−4 to 4 × 10−3 per day. Here we assume a death
rate δb of 1×10−3 per day. The CBB exiting rate constant ε̃be was chosen to
satisfy the solution feasibility condition (21), here taken to be ε̃be = 0.75ρb.

2.5.2. Parameter estimation

There are still three parameter values to estimate. These are the berry
infestation rate constant ε̃c, the berry severe infestation rate constant εci ,
and the CBB entering rate constant ε̃bo. To compute these parameter values
we used unpublished field data from Bayman’s laboratory (see Table 2a).
They collected samples of coffee berries in June (the early stage of the coffee
season) and September, October, and November (late stage) in different years
and counted the number of infested fruits, i.e., fruits with a CBB entry hole.
To compute the parameter values we fitted the model equations (14)-(17),
running from t = 0 to t = 184 days (May 1 to November 1), to the data on
Table 2a by solving a least-squares problem. Specifically, we minimized the
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Table 1: Model parameters

Parameter Description Value Reference

th (day) harvesting time 184 [12]
cT (berry/tree) total number of coffee berries

in the season
1,000 [20]

αb (CBB/berry) CBB carrying capacity per
berry

20 [19]

κb (CBB/tree) CBB carrying capacity per
tree

20,000

ρb (day−1) CBB reproduction rate con-
stant

0.0345 [24]

ε̃c (day
−1) coffee berry infestation rate

constant
0.742 computed, see text

εci (day
−1) coffee berry severe infestation

rate constant
0.0230 computed, see text

ε̃bo (day−1) CBB entering rate constant 0.0334 computed, see text
ε̃be (day

−1) CBB exiting rate constant 0.0259 chosen, see text
δb (day−1) CBB death rate constant 0.001 chosen, see text
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Table 2: Early and late coffee infestation

Percent of infested coffee per month
year June September October November b0

a

o

a: Data values

2010 1.67 5.62 7.34 12.41
2011 15.98 46.43 51.37 58.37
2015 5.58 6.21 9.16 11.02
2018 21.22 25.35 32.31 44.05

b: Predicted values

∼ 2010 4.53 7.27 7.65 8.05 65
∼ 2011 21.60 41.81 49.60 60.16 330
∼ 2015 6.24 10.25 10.94 11.74 90
∼ 2018 16.21 29.96 34.58 40.90 242

aInitial amount of free CBB/tree.

sum of the squares of the differences between the data values and the model
infested coffee c̃i1(t) + c̃i2(t) at t1 = 31, t2 = 123, t3 = 153, and t4 = 184
for each year. The parameters allowed to vary in the least-squares problem
were the three parameters mentioned above (ε̃c, εci , and ε̃bo) and the initial
values of free CBB, b0o in (6), for each year. The resulting parameter values
are reported in Table 1. Model outcomes are reported in Table 2b and the
comparison of these results with field data are shown in Fig. 2. The sum of
the squares of the differences between the data values and the model infested
coffee at the least-squares solution is equal to 2%. The initial values b0o
obtained by solving the least-squares problem are not used in the subsequent
computations since they were obtained for model calibration purpose only.

2.6. Model programs

Programs to solve the model equations were written in MATLAB (R2020a),
MathWorks®. Programs are provided in the Supplementary Material. To
solve the initial value problem we use the function ode45, which is a Runge-
Kutta method. The nonlinear least-squares problem, to fit the model param-
eters to the data, was solved with the function lsqnonlin (from the MAT-
LAB Optimization Toolbox™), which uses a trust-region reflective method
to compute a minimum.
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Figure 2: Model fitting to field data, which account for percent of infested coffee in June,
September, October, and November. Open circle, data; black curve, model results

3. Results

The goal of our analysis is to show that with an appropriate harvesting
strategy, the coffee berry borer (CBB) population can be eliminated or con-
trolled over several seasons. This strategy is determined through the analysis
of our mathematical model and will proceed over several steps. We have al-
ready analyzed the model Equations (14)-(17) without regard to the season
length. This provided us with relationships on parameters that fall within a
biologically meaningful range, leading to the infestation-free and infestation
steady-state solutions. In this section, we begin by studying the dynamics of
coffee and CBB populations within a single season to understand the effects
of harvesting. This is followed by tracking these populations over multiple
seasons using the one-dimensional map. We will show that the percentage
of harvesting per season affects an unstable fixed point of the map, which
in turn provides information about what amount of initial free CBB can be
eradicated. Then, by introducing immigration of CBBs at the beginning of
each coffee season, we will see that the value of the stable and unstable fixed
points come closer together. Thus, the effect of immigration narrows the
interval of initial free CBB for which the infestation can be controlled, and
owing to the constant immigration the infestation cannot be eliminated. The
section concludes with a few different examples of strategies for control of
the CBB population leading to an infestation-free solution.
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3.1. Model dynamics for one coffee season

We begin by studying the population dynamics and the amount of avail-
able coffee for consumption by solving the model Equations (14)-(17) for a
single season (365 days) without harvesting (φ = 0 in (22)) for different ini-
tial values of free CBB, b0o in (6). In Fig. 3 we show the population dynamics
over this coffee season. The values of b0o are 100, 150, and 200 CBB/tree in
Figs. 3a, 3b, and 3c, respectively. At the harvest day (184), the percentages
of consumable coffee (i.e., uninfested plus slightly infested coffee) are 88%,
81%, and 74% for the initial CBB values of 100, 150, and 200 CBB/tree,
respectively. At the end of the season, if the coffee is not harvested, the
percentages of consumable coffee would be 79%, 54%, and 25% for the ini-
tial CBB values of 100, 150, and 200 CBB/tree, respectively. When starting
with 100, 150, and 200 CBB/tree, the amount of CBB/tree at the end of the
season increases to 311, 936, and 2,291, respectively.

Now we solve the model equations (14)-(17) for one coffee season for
different percentages of coffee harvesting, φ in Equation (22), but keeping
fixed the initial value of free CBBs, b0o, equal to 200 CBB/tree in (6). In
our model each population is represented in a single and well-mixed com-
partment. Thus, by harvesting percentage, we mean the percentage of coffee
berries that are picked from the tree and/or up from the ground. In Fig. 4, we
show the population dynamics over one coffee season. In the three cases, the
percentage of consumable coffee at the harvesting day (184) is 74%. However,
the amount of available CBBs for the next season decreases as the percent
of harvesting increases, with 473 CBB/tree for 50% harvesting (Fig. 4a), 184
CBB/tree for 75% harvesting (Fig. 4b), and 91 CBB/tree for 90% harvesting
(Fig. 4c). Clearly, increased harvesting is beneficial for control of the CBB
population.

3.2. One-dimensional map for the discrete dynamics of multiple coffee sea-

sons

The season-to-season population dynamics can be predicted by using the
one-dimensional map sn+1 = f(sn) that takes the free CBB population at the
beginning of a season, and predicts what the population will be at the start
of the next season. The function f(x) is computed using Equations (14)-
(17) with harvesting at t = th (here we use x as the independent variable
for explanatory purposes). While we cannot explicitly express f(x) with an
analytic formula, we can describe several of its properties. First, by letting
b̃0o = 0 in (18) (which means sn = 0), the solution given in (19) implies that
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Figure 3: Population dynamics over a coffee season for different initial values of free
CBB, b0o; the initial values for the rest of variables are shown in Equation (18). In panel a
b0o = 100 CBB/tree, in b b0o = 150 CBB/tree, and in c b0o = 200 CBB/tree. Black solid line,
uninfested coffee cu; black dashed line, slightly infested coffee ci1 ; black dotted-dashed line,
severely infested coffee ci2 ; grey solid line, free CBB bo; grey dashed line, encapsulated
CBB be; diamond, amount of uninfested coffee per tree at the harvesting day; square,
amount of consumable coffee at the harvesting day, that is, the sum of uninfested coffee
and slightly infested coffee
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Figure 4: Population dynamics over a coffee season for different percentages of coffee
harvesting (φ) at day 184; the initial value of free CBBs (b0o) is kept fixed to 200 CBB/tree.
In panel a φ = 50%, in b φ = 75%, and in c φ = 90%. Black solid line, uninfested coffee
cu; black dashed line, slightly infested coffee ci1 ; black dotted-dashed line, severely infested
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amount of uninfested coffee per tree at the harvesting day; square, amount of consumable
coffee at the harvesting day, that is, the sum of uninfested coffee and slightly infested
coffee
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sn+1 = 0, and thus f(0) = 0. This means that if the free CBB population
is zero at the start of a season, it will also be zero at the start of the next
season. This is a condition for CBB extinction. Second, f(x) is a continuous,
monotone increasing function with regard to the value x. We can graph the
function y = f(x) together with the diagonal identity line y = x. Any point
at which these two graphs intersect is a fixed point of the one-dimensional
map. Further, since the slope of the identity line is always one, we can
easily determine if the derivative of the function f(x) at a fixed point is
less than (stable) or greater than one (unstable). Third, for a wide range of
parameters, the map will possess three fixed points. In addition to the s = 0
extinction fixed point, there exists another stable fixed point at large values
of CBB called the map’s infestation solution. In between the extinction and
infestation fixed points lies an unstable fixed point which is the threshold
that separates solutions that get attracted to either of these two. Finally, the
graph of the map f(x) depends on parameter values, which in turn changes
the value of the unstable threshold as well as the stable infestation fixed
point.

Fig. 5a shows an example of the graphical representation of the map with
80% harvesting. The grey diagonal line represents the identity and the black
curve depicts the function f(x). Note that these two curves intersect at two
points (one filled and one open circle). The slope at the filled circle (x = 0)
is less than one as the function emerges below the diagonal. Thus this fixed
point is stable and any nearby values will be iterated towards it. The slope at
the open circle (x = 256) is larger than one as the curve passes from below to
above the diagonal. This fixed point is therefore unstable and nearby initial
conditions iterate away from it.

In Fig. 5b, we show the same map for 80% harvesting in the zoomed out
interval [0, 13000] CBB/tree to illustrate the third fixed point of the map
at x = 12, 680. The slope at the third fixed point is less than one as the
curve crosses the diagonal from above to below it and thus that point is
stable. Fig. 5c shows the map for 90% harvesting. Note how the unstable
fixed point has shifted to a higher value of 352. All of these figure panels
also show a cobweb diagram. In Fig. 5a with 80% harvesting, if an initial
free CBB population of 246 CBB/tree (cobweb on the left) is chosen, the
iterates of the map predict that the free CBB population decreases year
by year until extinction after roughly 7 years (numbers next to each iterate
indicate the corresponding year). Alternatively, if the initial CBB population
is taken to be equal to 266 CBB/tree (cobweb on the right), then the CBB
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population increases each year leading to complete infestation (cobweb from
Panel a continued in Panel b). From this example, we see that if the initial
CBB population has a value that is smaller than the unstable fixed point,
eradication is possible. If not, total infestation occurs.

Fig. 5c shows the cobweb diagram with 90% harvesting. Since the unsta-
ble fixed point of the map has shifted to the larger value of 352, an initially
larger value of the CBB population can still be eliminated. For example,
an initial CBB population of s1 = 342 leads to extinction after roughly 6
years. Note that this initial condition under 80% harvesting would lead in-
stead to infestation (see Fig. 5a). Also observe the increased concavity of the
map for 90%. This leads to faster convergence towards extinction compared
to the 80% harvesting case. Indeed, starting with an initial CBB popula-
tion of s1 = 246 with 90% harvesting would lead to extinction in just three
years (grey dashed cobweb) instead of seven years (cobweb on the left of the
unstable fixed point in Fig. 5a).

Although 90% harvesting leads to extinction of larger initial CBB pop-
ulation, it may not be feasible to maintain that level of harvesting over a
large number of years. Our results suggest that a higher harvesting rate can
be reduced in subsequent years and still obtain extinction. For example,
in Fig. 5d, we superimpose the maps for both 80 and 90% harvesting. We
choose an initial value of s1 = 342 and harvest at 90% for 4 years. The
value s4 = 228 (diamond) is less than x = 256, which is the value of the
unstable fixed point for the 80% map (open circle). We can then switch to
80% harvesting and still achieve eradication. Note that it takes two years
longer than if we had continued at the 90% rate.

The one-dimensional map above predicts that for 80% and 90% of coffee
harvesting it will take about seven years to eliminate the CBB population.
We solved the model Equations (14)-(17) for eight consecutive years for the
two different percentages of harvesting. It is assumed that each year the
same percentage of harvesting is carried out in each case. In the first year,
the free CBB/tree initial values are 246 and 342 for 80% and 90% of coffee
harvesting, respectively. After the first year, the free CBB initial value is
taken equal to the summation of the free and encapsulated CBB at the end
of the previous season. Results are shown in Fig. 6 for uninfested coffee
and free and encapsulated CBB, showing eradication of the CBB population
in eight years to four digits of accuracy, i.e., when the number of free plus
encapsulated CBBs per tree at the end of the nth year is less than 0.5×10−4.
This result is consistent with the prediction of the map.
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Figure 5: Map of the discrete dynamics over multiple seasons. Panel a, map shown in the
interval [0, 500] for 80% harvesting, φ = 80%; panel b, zoom out of the map in panel a to
complete the entire map for 80% harvesting and show three fixed points; in panels c and d

relevant maps are shown in the interval [0, 500]; panel c, 90% harvesting, φ = 90%; panel
d, comparison of the numbers of years it will take to eliminate the CBB by harvesting
90% of the coffee and then switching to harvesting 80% after passing the unstable point
versus staying with 90% harvesting as in panel c. Grey line, the identity; black curve, the
map sn+1; filled circle, stable fixed point of the map; open circle, unstable fixed point of
the map; vertical and horizontal lines with arrows, cobweb diagram; numbers close to a
curve, season sequence; arrows, direction of a stable point; diamond, season at which the
harvesting percentage changes
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Figure 6: Population dynamics over eight coffee seasons for two different percentages of
coffee harvesting (φ) at day 184 and a free CBB initial value (b0o) that is smaller than the
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coffee at the harvesting day; square, amount of consumable coffee at the harvesting day,
that is, the sum of uninfested coffee and slightly infested coffee (not shown)
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3.3. Immigration effect at the start of each season

In the results we have obtained thus far, zero is a stable fixed point of the
one-dimensional map, which means that under certain conditions the CBB
can be eradicated. However, to the best of our knowledge, in the literature
there is not any evidence that suggests the extinction of the CBB is possible
once they have invaded a site. Perhaps this is due to arrival of new CBBs
each season, i.e., immigration of the CBB. Hence, we studied the effects on
the existence and stability of the map fixed points due to introduction of
a constant amount of CBB/tree at the beginning of the coffee season and
keeping that amount constant in subsequent seasons. Immigration, for all
other parameters fixed, has the effect of increasing the value of f(s); that is
the map moves up in the sn-sn+1 plane. As a result, the stable fixed point at
s = 0 will shift to a non-zero positive value of s and the value of the unstable
fixed point will decrease.

Figure 7 displays results of the map over multiple seasons assuming dif-
ferent amounts of CBB immigration at the beginning of each coffee season.
In the computations 80% harvesting in each season is assumed. When the
initial addition is 10 CBB/tree, the stable and unstable fixed points move
to 12 and 248 from 0 and 256 CBB/tree without immigration, respectively
(Fig. 7a). Note that the stable fixed point (12 CBB/tree) is larger than
the amount of CBB immigrating (10 CBB/tree), to reduce the stable fixed
point to 10 CBB/tree, one needs to harvest 91% of the berries each season.
If 25 CBB/tree are immigrating, then the stable fixed point increases to 32
CBB/tree and the unstable fixed point decreases to 235 CBB/tree (Fig. 7b).
For an immigration of 50 CBB/tree, the stable fixed point is 73 CBB/tree
and the unstable fixed point is 205 CBB/tree (Fig. 7c). When immigration
is 70 CBB/tree the stable and unstable fixed points collide at a saddle-node
bifurcation (143 CBB/tree, see Fig. 7d). As a result, whenever there is an
immigration of 70 or more CBB/tree 80% harvesting is not enough to control
the CBB infestation and the percentage of harvesting must be increased.

3.4. Harvesting as an infestation control practice

Based on the model assumptions and parameter values in Table 1, we
now obtain the relation between CBB infestation and the percentage of cof-
fee harvesting that should be applied to eliminate or control the CBB (see
Table 3). We compare two cases: neglecting CBB migration at the begin-
ning of each coffee season (second column of Table 3) and introducing 10
CBB/tree in each season to account for borer immigration (third column of
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Figure 7: Map of the discrete dynamics over multiple seasons with CBB immigration. In
each season a fixed amount of CBB/tree is added from outside to account for immigration:
Panel a, 10 CBB/tree are added; panel b, 25 CBB/tree; c, 50 CBB/tree; panel d, 70
CBB/tree. 80% harvesting is assumed. Grey line, the identity; black curve, the map sn+1;
filled circle, stable fixed point of the map; open circle, unstable fixed point of the map.
Note that the stable and unstable fixed points collided for an immigration of 70 CBB/tree
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Table 3). The value of the unstable fixed point is labeled as the threshold
value such that the initial free CBB/tree in the first season must be less than
this value to be able to control the infestation after several subsequent years
of this practice. We computed this threshold value for different harvesting
percentages for the cases of no migration or immigration of 10 CBB/tree.
The results shown on Table 3 suggest that to control the CBB one must
estimate the number of CBB at the beginning of the season when berries
are formed and, at harvesting time, harvest at least the percentage of coffee
indicated in the table for several years. For example, if one estimates 100
CBB/tree at the beginning of a season, one must harvest at least 60% of the
coffee for multiple years. Further, whenever the initial amount of free CBB
is greater than 413 CBB/tree without immigration or 408 with 10 CBB/tree
added from the outside, even 100% coffee harvesting will lead to total in-
festation. The reason is that at harvest time th the amount of free CBB
will be larger than the initial value. In view of the small death rate there
will be enough free CBB to increase the infestation in the next season. In
the fourth column of Table 3 we show the number of years it would take to
control the number of CBB/tree for each percent of harvesting, starting with
50 CBB/tree in the first year. Computations are carried out to four digits
of accuracy. Note that the value used in Figure 6 for the initial number of
CBB/tree (246 CBB/tree for 80% harvesting) is too high and we chose it
simply to illustrate the capacity of this practice. However, 50 CBB/tree is a
more typical value. As can be seen in Table 3, by applying 80% harvesting
for three consecutive years without immigration it is possible to eliminate
the CBB.

We computed bifurcation diagrams which clearly show the threshold effect
of the unstable fixed point. Figure 8a plots the values of the stable and
unstable fixed points of the map in the absence of immigration for different
levels of harvesting. Filled circles denote stable fixed points and open circles
are unstable fixed points. For this case, for any level of harvesting (x-axis),
there is a fixed point at 0 indicating complete eradication. However, as
the harvesting percentage decreases, the value of the unstable fixed points
decreases (see Table 3 middle column for exact values), lowering the threshold
value that separates the two stable solutions, which in turn shrinks the basin
of attraction of the infestation-free solution. In other words, as the harvesting
percentage decreases, the initial value of CBBs per tree must also be smaller
in order to ensure eradication. Note that the scale on the vertical y-axis is
split, with the lower values 0 to 500 corresponding to the unstable and lower
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Figure 8: Bifurcation diagram for different harvesting percent. Each diagram shows three
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Panel a, no immigration is considered; panel b, immigration of 10 CBB/tree is included in
each season. A saddle-node bifurcation occurs at harvesting percentage 42% (bold open
circle). Note that the vertical scale in each panel has two distinct parts separated by the
double backslash marks. Values for the unstable fixed points correspond to those shown
in Table 3.

stable branch and the higher values 1 to 7 ×104 corresponding to the upper
branch of stable points. Figure 8b shows the bifurcation diagram when 10
CBBs per tree are allowed to immigrate per year. Now the merging of the
unstable and lower stable branch at a saddle-node bifurcation point is evident
(bold open circle) at 42% harvesting (see also Caption of Table 3). Thus for
any harvesting percentage less than 42% only the infestation solution remains
and is the attracting solution.

3.5. Temperature Dependence of CBB reproduction rate

We studied how seasonal changes in the temperature will affect our re-
sults. While the temperatures in the coffee-growing region in Puerto Rico
may range from 8-34◦C [3], we note that the extremes of these tempera-
tures in the hills does not last for the entire day. According to Figure 3
(Egg-Adult) in [24], borers reproduce when the temperature is roughly in
the range of 15-32◦C. Thus, in our model we use the range of temperatures
15-30◦C and incorporate its effect on the encapsulated borer population re-
production rate ρb, which in turn affects the encapsulated borer exit rate ε̃be
(21). In particular, we replace the constant value of ρb used earlier with the
expression [24]

ρb(T ) = eaT − e(aTmax−(Tmax−T )/b) + c, (23)
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Table 3: Coffee harvesting needed to control CBB depending on initial levels of CBB
infestation

Threshold valuea Years to control infestation
immigration of starting with 50 CBB/tree

Harvesting (%) w/o immigration 10 CBB/tree w/o immigration

100 413 408 2
90 352 345 2
80 256 248 3
70 181 172 4
60 130 119 5
50 94 78 7
40 67 – 11
30 47 – –
20 31 – –
10 19 – –
0 11 – –

aNumber of CBB/tree. The initial free CBB/tree in the first season must
be less than this value. For 42% of harvesting with immigration the stable
and unstable fixed points collided at 38 CBB/tree, for smaller harvesting
fractions there were no fixed points.
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where the parameters a, b, c, and Tmax are taken from Table 3 in [24] and
the temperature function is taken as

T (t) = 15 + (30− 15) sin ((t + 90 mod 365)π/365) (24)

Because a coffee season in the model starts on May 1st, the sin function is
shifted by 90 days to reflect that the coolest temperature is at the end of
January and the hottest day is at the beginning of August. The value of
the encapsulated borer exit rate remains at the same ratio as in the constant
temperature case, ε̃be = 0.75ρb.

With these changes the results are qualitatively similar to the ones ob-
tained with constant CBB reproduction rate. The parameter values and re-
sults of the model fitting to the data are shown in the Supplementary Material
in two tables analogous to Tables 1 and 2. Interestingly, for an infestation
that in the first year begins with 50 CBB/tree, both models, constant and
temperature dependent CBB reproduction rate, require the same number of
years to control the infestation for 50% or more harvesting (fourth column
in Tables 3 and 4). The main difference between the two models is that the
one with variable CBB reproduction rate is able to control the infestation
(in 19 years) applying 30% harvesting whereas the model with constant re-
production rate is unable to control the infestation with that percentage of
harvesting because its threshold is below the initial number of CBB/tree. We
also compared the number of years that it takes to control the CBB for the
constant and variable CBB reproduction rate for different initial numbers of
CBB/tree in the first year by varying that value from 50 to 225 CBB/tree
in increments of 25 CBB/tree (not shown). The results were similar to the
ones shown in the fourth column of Tables 3 and 4. Note that for an initial
value of 225 CBB/tree 80% harvesting is required (second column, Tables 3
and 4). As the starting amount of CBB/tree increases from 50 to 225, the
control time increases linearly from 3 to 8 years (fourth column, Tables 3
and 4 and Figure 6).

4. Discussion

We have developed a quantitative model for applying CBB control man-
agement in an infested coffee site in Puerto Rico. The procedure is based
on the cultural practice of harvesting and picking up fallen coffee fruits from
the ground. The model provides a threshold for identifying whether an in-
festation can be controlled and, if that is possible, it estimates the minimal
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Table 4: Coffee harvesting needed to control CBB depending on initial levels of CBB
infestation, variable CBB reproduction rate

Threshold valuea Years to control infestation
immigration of starting with 50 CBB/tree

Harvesting (%) w/o immigration 10 CBB/tree w/o immigration

100 361 355 2
90 311 304 2
80 243 235 3
70 183 174 4
60 138 126 5
50 104 88 7
40 77 – 10
30 55 – 19
20 37 – –
10 23 – –
0 13 – –

aNumber of CBB/tree. The initial free CBB/tree in the first season must
be less than this value. For 40% of harvesting with immigration the stable
and unstable fixed points collided at 40 CBB/tree, for smaller harvesting
fractions there were no fixed points.
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percentage of harvesting that must be applied during a number of subsequent
coffee seasons to eliminate or reduce the infestation. Further, the model can
estimate the number of years that it may take to control the CBB infestation
based on an initial number of CBB/tree.

The main findings of this paper involved analyzing a coupled set of non-
linear differential equations that modeled the population levels of free and
encapsulated CBBs and of coffee berries (uninfested and slightly and severely
infested). Instead of relying on simulations of a five-dimensional system, we
derived a novel one-dimensional map that tracks the free borer population
from season to season. During a single season, defined here as May 1 to April
30 of the next year, the dynamics of all five populations were computed using
the five-dimensional system which also included the percentage of harvesting
at roughly halfway through the season. At the end of the season, we simply
used the remaining CBBs to serve as the initial free CBBs for the next season.
There are several advantages to using this map-based approach compared to
running simulations of the nonlinear equations. First, the map reveals the
existence of a harvesting percentage dependent threshold (the map’s unsta-
ble fixed point) that separates out initial CBB population values that can be
regulated versus those that lead to total infestation. Thus, the map provides
a quantifiable and useful prediction of the level of harvesting needed in order
to control the CBB population. Second, the map makes a prediction of how
many seasons a particular harvesting strategy must be followed in order to
eradicate the CBB. Third, it is straightforward to understand how the map
depends on relevant parameters, for example, the harvesting percentage or
the death rate of the CBB. Changes in parameters typically change the value
of the threshold in a systematic way, e.g., an increase in the harvest percent-
age increases the threshold to more CBBs/tree. Simulations alone do not
reveal the existence of the threshold or its dependence on parameters, nor
do they predict the number of seasons to eradication. Discrete maps similar
to the one-dimensional map described here have long been used to under-
stand biological processes. Often these take the form of a Poincaré map to
study general biological oscillators [25] or neuronal dynamics [26]. In other
circumstances, the one-dimensional map can be derived by using important
observable quantities from the underlying nonlinear equations. For example,
phase response curves (see [27] for a review) which track the change in phase
of an oscillator due to a perturbation can be formulated in the context of
one-dimensional maps. One- and two-dimensional maps also have a long his-
tory in deriving error-correction schemes which govern synchronization of an
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oscillator with an external periodic signal [28–30]. In all of the above cases,
the map-based approach revealed information and mechanisms that governed
the underlying dynamics of the nonlinear system that were not immediately
evident from simulations alone.

Our results provide theoretical support to earlier observations that re-
moving infested fruits is key to reducing CBB infestation in subsequent years
[9, 11, 17, 21]. However, as noted in Fig. 6, a successful management strat-
egy may not produce noticeable results for the first four or five years. The
squares in the graphs in Fig. 6 indicate the amount of coffee available for
harvesting. However, from that amount, we only harvest a fraction. For
example, during the first three years of harvesting 90% the coffee yield is
less than 529 fruits per tree. This is counterintuitive because it may appear
that the strategy is not working for the first few years. This situation is
something that could discourage coffee farmers from pursuing this strategy.
However, our model simulations show that after four years of this practice
a dramatic increase in consumable coffee is achievable. Coffee farmers base
decisions about harvesting on various factors: the size of the crop, the price
they will receive for their coffee, the availability and price of labor, among
others. The model results also suggest a note of caution if the harvesting
percentage drops too significantly in any given year. Namely, if the num-
ber of CBB/tree lies above the value of the unstable fixed point of the map
corresponding to that harvest percentage, then the CBB population would
increase during that year. Our results suggest that the effect of harvesting
on future CBB infestations should also be a consideration, and this model
can help inform decisions about how important the effect of harvesting will
be.

The difficulty of the first years exhibited by the harvesting strategy (Fig. 6)
could be overcome by combining this practice with other methods of cul-
tural, chemical or biological control. These include traps to catch free CBBs,
application of the entomopathogenic fungus Beauveria bassiana, release of
parasitoid wasps that attack the CBB, and pruning of coffee plants to reduce
reservoirs of CBBs [11, 12]. As we have seen with the cultural practice of
harvesting, none of these control measures by itself might be sufficient to
eliminate the CBB from coffee farms, but in combination they could reduce
it to manageable levels.

Harvest levels vary greatly, depending on the price of coffee, the cost and
availability of labor, and quality of the crop. In Puerto Rico the harvesting
levels discussed in this paper (80-90%) are realistic. Many coffee farms are
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harvested in a single pass, and a lot of fruits are missed. This may be because
the pickers have more incentive to pick as much as they can in a given period
of time instead of harvesting all fruits. In years when the crop is bad or labor
is scarce, harvesting percentages may drop below this 80-90% estimate.

In countries where labor is cheaper and more readily available, harvest
levels tend to be higher. But even so, the harvesting levels here are relevant.
Much of the literature on this subject makes the point that more complete
harvesting is essential for controlling the CBB [4, 5, 11, 12], so the conclusion
here is consistent with the literature as well as with harvesting levels.

Our model assumes that fruits that fall on the ground are removed from
the system, and are the same as harvested fruits. This may be an over-
simplification in some contexts. In fact, fallen fruits may be an important
source of CBBs that attack new fruits; several studies have shown that they
can contain substantial numbers of CBBs [3, 12, 13]. However, in Puerto
Rico and other humid climates these fruits degrade quickly, so they are not
a long-term source of CBBs [3, 21]. For a more comprehensive study on the
effect of removing ground berries, future modeling studies will need to split
each coffee state into two new state variables: tree and ground coffee for each
category.

The model equations (14)–(17) of interaction between coffee berries and
CBBs assume a constant amount of coffee berries at the beginning of each
season and population interaction rates that are time independent. However,
the initial amount of coffee berries depends on several factors such as weather
(e.g., amount of rainfall in the previous year) and physiology [14, 17]. Fur-
ther, the CBB emergence and death rates may be affected by environmental
conditions such as temperature and rainfall [15, 17]. Our choice of these
parameters are based on average values, which exhibit small variability in
Puerto Rico’s coffee farms.

In conclusion, in this paper we have introduced a new management strat-
egy based on the cultural practices of coffee farmers for control of CBB
infestation. We have demonstrated through mathematical modeling that
there exists a critical threshold that can be potentially identified and used
by farmers to develop multi-season harvesting practices. Our work shows
that modeling the infestation can be a key tool for efficient and successful
CBB infestation management.
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