University of Puerto Rico
 College of Natural Sciences
 Department of Mathematics
 Río Piedras Campus

MS Qualifying Examination
Area: Computational Analysis
Date: 2 April 2018

Solve any three of the following five problems.

1. Let A be a real symmetric positive definite matrix and consider solving the linear system

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
$$

(a) (5 points) Prove that solving the linear system (1) is equivalent to computing

$$
\mathbf{x}=\sum_{i=1}^{n}\left(\frac{\alpha_{i}}{\lambda_{i}}\right) \mathbf{u}_{i}
$$

where λ_{i} is eigenvalue of A, \mathbf{u}_{i} is the corresponding eigenvector, and the α_{i} 's are the coordinates of \mathbf{b} for the basis of the eigenvectors of A.
(b) (5 points) Consider the following example

$$
\left[\begin{array}{ll}
1001 & 1000 \\
1000 & 1001
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

use part (a) to verify that, when $\mathbf{b}=[2001,2001]^{\mathrm{T}}$, the small change $\delta \mathbf{b}=[1,0]^{\mathrm{T}}$ produces large variations in the solution. Explain why that happens.
2. $Q R$ decomposition.
(a) (4 points) For a given vector $\mathbf{x} \in \mathbb{R}^{n}$ and r a positive integer number, find the Householder matrix H, which is an orthogonal matrix such that $H \mathbf{x}$ annihilates the elements below x_{r} and keeps unchanged the elements above x_{r}. Further, find the expression for x_{r}.

Now, consider the following matrix and column vector

$$
A=\left[\begin{array}{cc}
1 & -4 \\
2 & 3 \\
2 & 2
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
-3 \\
5 \\
5
\end{array}\right]
$$

(b) (3 points) Use Householder matrices to produce the $Q R$ factorization of A, where Q is an orthogonal matrix and R is an upper trapezoidal matrix.
(c) (3 points) Using the $Q R$ factorization from part (a), solve the linear system $A \mathbf{x}=$ b in the least-squares sense and report the square of the residual norm.
3. Gauss-Jacobi iterative method.
(a) (3 points) An $n \times n$ real matrix A is strictly diagonal dominant if

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}\left|a_{i j}\right| \geq 0
$$

Prove that for a strictly diagonal dominant matrix the Gauss-Jacobi method converges to the solution \mathbf{x}^{*} of (1) for any initial $\mathbf{x}^{(0)}$.
(b) (4 points) Consider the matrix

$$
H=\left[\begin{array}{cccc}
0 & -1 / 3 & -1 / 3 & 0 \\
-1 / 3 & 0 & -1 / 3 & -1 / 3 \\
-1 / 3 & -1 / 3 & 0 & -1 / 3 \\
0 & -1 / 3 & -1 / 3 & 0
\end{array}\right]
$$

By using the Gerschgorin Theorem, the transformation

$$
B=D^{-1} H D
$$

for a suitable diagonal matrix D, and noting the relationship between the matrices H and B, prove that $\rho(H)<1$.
(c) (2 points) Prove that the Gauss-Jacobi method converges for the matrix

$$
A=\left[\begin{array}{llll}
3 & 1 & 1 & 0 \\
1 & 3 & 1 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 3
\end{array}\right]
$$

(d) (1 point) The matrix A in 3(c) is a symmetric diagonally dominant (SDD) matrix. Does Gauss-Jacobi converge for all SDD matrices? Prove your answer.
4. Nonlinear equations.
(a) (5 points) For the approximation of the zeros of the function

$$
f(x)=\frac{2 x^{2}-3 x-2}{x-1}
$$

consider the following fixed-point methods:

$$
\begin{equation*}
x^{(k+1)}=g\left(x^{(k)}\right), \quad \text { where } \quad g(x)=x^{2}+\frac{x}{2}+\frac{1}{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{(k+1)}=h\left(x^{(k)}\right), \quad \text { where } \quad h(x)=x-2+\frac{x}{x-1} . \tag{3}
\end{equation*}
$$

Analyze the convergence properties of the two methods and determine in particular their order to approximate the roots of $f(x)=0$.
(b) Consider the optimization problem

$$
\begin{equation*}
\max _{x>0}\left(-x^{4}+3 x^{2}+2\right) \tag{4}
\end{equation*}
$$

i. (2 points) Verify that problem (4) has a real solution.
ii. (3 points) Write down the Newton's iterate for problem (4). Does Newton's method converges for any initial iterate $x_{0}>0$?
5. The closed Simpson's rule is obtained by using the Lagrange interpolation polynomial of degree 2 at the nodes $x_{i}=a, c=(a+b) / 2, b$, where a and b are the integration limits.
(a) (4 points) Derive the Simpson's rule

$$
I_{2}(f)=\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right) .
$$

(b) (6 points) Find the error expression. You may want to use the following result (do not need to prove)

$$
f\left[x_{0}, \ldots, x_{n}, x\right]=\frac{f^{(n+1)}(\xi)}{(n+1)!}
$$

for some ξ in the smallest interval containing the nodes $x_{0}, x_{1}, \ldots, x_{n}$ and x.

