University of Puerto Rico
 College of Natural Sciences
 Department of Mathematics
 Río Piedras Campus

MS Qualifying Examination

Area: Computational Analysis

Date: 24 August 2018
Solve three of the following problems. If more than three problems are answered, please indicate the three problems that must be graded.

1. Consider the following approach to developing a compact method for producing the $L U$ factorization of a nonsingular $n \times n$ matrix A. Write

$$
A=\left[\begin{array}{cc}
\hat{A} & \mathbf{d} \tag{1}\\
\mathbf{c}^{\mathrm{T}} & \alpha
\end{array}\right]
$$

where \hat{A} is $n-1 \times n-1, \mathbf{c}$ and $\mathbf{d} \in \mathbb{R}^{n-1}$, and $\alpha \in \mathbb{R}$. As a step in an induction process, assume \hat{A} is nonsingular and the $L U$ decomposition is known

$$
\hat{A}=\hat{L} \hat{U}
$$

where \hat{L} is lower triangular with ones on the diagonal and \hat{U} is upper triangular with nonzero elements on the diagonal. Then seek $A=L U$ in the form

$$
A=\left[\begin{array}{cc}
\hat{L} & \mathbf{0} \\
\mathbf{m}^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{cc}
\hat{U} & \mathbf{q} \\
\mathbf{0}^{\mathrm{T}} & \gamma
\end{array}\right]
$$

where \mathbf{m} and $\mathbf{q} \in \mathbb{R}^{n-1}, \mathbf{0}$ is the zero vector of length $n-1$, and $\gamma \in \mathbb{R}$.
(a) (5 points) Show that \mathbf{m}, \mathbf{q}, and γ can be found, and describe how to do so.
(b) (4 points) Apply the method obtained in (a) to find the $L U$ decomposition of the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & -2 \\
-3 & 1 & 1
\end{array}\right]
$$

(c) (1 point) However, one must be careful with this method because in the partition of A in (1) even when A is nonsingular, \hat{A} could be singular, provide an example of such a case.
2. Let A be an $m \times n$ real matrix and consider the $Q R$ factorization of A, where Q is an $m \times m$ orthogonal matrix and R is an $m \times n$ upper trapezoidal matrix. Let's assume that $m \geq n$ and A is a full rank matrix.
(a) (3 points) By writing

$$
R=\left[\begin{array}{l}
\tilde{R} \\
O
\end{array}\right]
$$

where \tilde{R} is an $n \times n$ upper triangular matrix and O is the $(m-n) \times n$ zero matrix. Prove that the solution of the linear system $A \mathbf{x}=\mathbf{b}$ in the least-squares sense can be obtained by solving

$$
\tilde{R} \mathbf{x}=\mathbf{c}
$$

where \mathbf{c} is the vector of the first n elements of $Q^{\mathrm{T}} \mathbf{b}$. Further, show that the square error is given by the square of the two-vector norm $\left(\|\cdot\|_{2}\right)$ of the vector that contains the rest $m-n$ elements of $Q^{\mathrm{T}} \mathbf{b}$.
(b) (3 points) Prove that the singular values σ_{i} of A are real and nonnegative. Further, show that $\max _{1 \leq i \leq n} \sigma_{i}=\|A\|_{2}$.

Now, consider the following matrix and column vector

$$
A=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 \\
1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right]
$$

(c) (2 points) Verify that the following matrix is orthogonal

$$
Q=\left[\begin{array}{ccc}
-\sqrt{2} / 3 & 0 & 1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right]
$$

and find the upper trapezoidal matrix R that with Q produces the $Q R$ decomposition of A.
(d) (2 points) Using the $Q R$ factorization from problem (2c), and the method from problem (2a) solve the linear system $A \mathbf{x}=\mathbf{b}$ in the least-squares sense and report the square of the residual norm.
3. Let A be a nonsingular $n \times n$ matrix and $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ its condition number.
(a) (2 points) Show that $\kappa(\alpha A)=\kappa(A)$ for any nonzero scalar α.
(b) (5 points) Show that $\kappa_{2}(A)=\kappa_{2}(Q A)=\kappa_{2}(A Q)$ for any orthogonal $n \times n$ matrix. Note: $\kappa_{2}(A)$ is the condition number of A with respect to the two-matrix norm $\|\cdot\|_{2}$.
(c) (3 points) Consider the linear system

$$
\begin{cases}0.001 x_{1} & =b_{1} \\ x_{1}+10000 x_{2} & =b_{2}\end{cases}
$$

where b_{1}, b_{2} are arbitrary. Show that the condition number of the coefficient matrix is at least 10^{7}. However, give a geometrical argument to the fact that the coefficient matrix can still be considered well conditioned.
4. Let A be a real $n \times n$ matrix and assume that $\lambda \in \mathbb{C}$ is a simple eigenvalue of A with corresponding eigenvector \mathbf{v} such that $\mathbf{v}^{\mathrm{T}} \mathbf{v}=1$. The pair (\mathbf{v}, λ) is a solution of $\mathbf{F}(\mathbf{x}, \gamma)=\mathbf{0}$ where $\mathbf{F}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ is given by

$$
\mathbf{F}=\left[\begin{array}{c}
A \mathbf{x}-\gamma \mathbf{x} \\
\mathbf{x}^{\mathrm{T}} \mathbf{x}-1
\end{array}\right]
$$

(a) (4 points) Write down the equations for Newton's method for approximating a root or solution of $\mathbf{F}(\mathbf{x}, \gamma)=\mathbf{0}$.
(b) (4 points) Show that the derivative of \mathbf{F} at (\mathbf{v}, λ) is nonsingular. Note: You may assume without proof that Range $(A-\lambda I) \cap N(A-\lambda I)=\{\mathbf{0}\}$.
(c) (2 points) What can you conclude about the convergence (global or local and order) of Newton's method to the solution (\mathbf{v}, λ) of $\mathbf{F}(\mathbf{x}, \gamma)=\mathbf{0}$.
5. Consider the open Newton-Cotes rule $I_{1}^{\circ}(f)$ that is obtained by using the Lagrange interpolating polynomial of degree 1.
(a) (3 points) Derive the rule $I_{1}^{\mathrm{o}}(f)$.
(b) (3 points) Find the error expression $E_{1}^{\circ}(f)$ for the rule $I_{1}^{\circ}(f)$.
(c) (2 points) Using the rule $I_{1}^{\mathrm{o}}(f)$, derive a composite method $I_{1, m}^{\mathrm{o}}(f)$ that includes the error term.
(d) (2 points) Find the number of subintervals m that is needed for the composite rule $I_{1, m}^{\mathrm{o}}(f)$ to compute the value of the integral

$$
I(f)=\int_{-1}^{1} \frac{d x}{1+x^{2}}
$$

to 8 digits of accuracy.

