University of Puerto Rico
College of Natural Sciences
Department of Mathematics
Río Piedras Campus

MS Qualifying Examination

Area: Computational Analysis

Date: 11 August 2022

Solve three of the following problems. Please indicate below which problems you

 have attempted by circling the appropriate numbers:$$
1
$$

2
3
4
5

1. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right]
$$

where $\gamma \geq 0$, and the linear system $A \mathbf{x}=\mathbf{b}$, for some vector $\mathbf{b} \in \mathbb{R}^{2}$.
(a) (3 points) Compute

$$
\operatorname{Cond}(A)_{\infty}=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}
$$

where $\|A\|_{\infty}$ is the maximum-matrix norm of A.
(b) (3 points) For what values of γ the solution of the linear system by using Gaussian elimination in a machine with double precision might not guarantee any digits of accuracy?
(c) (4 points) Now, for a value of γ within the range from part (b) solve the linear system with an arbitrary $\mathbf{b} \in \mathbb{R}^{2}$ using Gaussian elimination and explain why A can still be considered well conditioned.
2. Consider the $n \times n$ Householder matrix H applied to a vector $\mathbf{a} \in \mathbb{R}^{n}$, where $H=I-2 \mathbf{w w}^{\mathrm{T}}$ for some unit vector \mathbf{w}, such that $H \mathbf{a}=\beta \mathbf{e}_{1}$, where $\mathbf{e}_{1}=[1,0,0, \ldots, 0]^{\mathrm{T}}$.
(a) (3 points) If H is real, show that $\beta= \pm\|\mathbf{a}\|_{2}$ and explain how to choose the sign.
(b) (4 points) Given a and β, explain how to construct \mathbf{w}.
(c) (3 points) Construct the Householder matrix to transform the vector

$$
\mathbf{a}=[1,2,2]^{\mathrm{T}}
$$

3. Let $g(x)$ be a continuously differentiable function with a fixed point at $x=\alpha$. Check the following properties:
(a) (3.5 points) If $0<g^{\prime}(\alpha)<1$, then the convergence is monotone, that is, the error $x_{k}-\alpha$ maintains a constant sign as k increases.
(b) (3.5 points) If $-1<g^{\prime}(\alpha)<0$, then the convergence is oscillatory, that is, the error $x_{k}-\alpha$ alternates sign as k increases.
(c) (3 points) If $\left|g^{\prime}(\alpha)\right|>1$, then the iterates diverge. More precisely, if $g^{\prime}(\alpha)>1$, the sequence is monotonically diverging, while for $g^{\prime}(\alpha)<-1$, it diverges with oscillatory sign.
4. Simpson's rule approximates the integral $I(f)=\int_{a}^{b} f(x) d x$ by using the Lagrange interpolating polynomial at the points $(a, f(a)),(b, f(b))$, and $(c=(a+b) / 2, f(c))$.
(a) (5 points) Show that Simpson's rule is

$$
I_{2}(f)=\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right) .
$$

(b) (5 points) Prove that the error expression $E_{2}(f)$ for Simpson's rule is given by

$$
E_{2}(f)=-\frac{(b-a)^{5}}{2880} f^{(4)}(\xi),
$$

for some $\xi \in(a, b)$.
5. For the initial value problem

$$
\begin{align*}
y^{\prime}(x) & =f(x, y(x)) \\
y\left(x_{0}\right) & =y_{0} \tag{1}
\end{align*}
$$

consider the methods

$$
\begin{equation*}
y_{i+1}=y_{i}+h\left[\alpha f\left(x_{i}, y_{i}\right)+(1-\alpha) f\left(x_{i-1}, y_{i-1}\right)\right], \tag{2}
\end{equation*}
$$

where $\alpha \in \mathbb{R}, y_{i}=y\left(x_{i}\right)$, and h is the step length.
(a) (5 points) Find the leading term in the local truncation error of method (2) and determine the order of accuracy of the method as a function of α.
(b) (5 points) For the special case $f(x, y)=\lambda y$ with $\lambda \in \mathbb{R}$ find the maximum h such that the method is stable for $\alpha=1$. Note that h may depend on λ.

