University of Puerto Rico College of Natural Sciences Department of Mathematics Río Piedras Campus

MS Qualifying Examination

Area: Computational Analysis

Date: 11 August 2022

Solve three of the following problems. Please indicate below which problems you have attempted by circling the appropriate numbers:

- 1 2 3 4 5
- 1. Consider the matrix

$$A = \begin{bmatrix} 1 & 0 \\ \gamma & 1 \end{bmatrix},$$

where $\gamma \geq 0$, and the linear system $A\mathbf{x} = \mathbf{b}$, for some vector $\mathbf{b} \in \mathbb{R}^2$.

(a) (3 points) Compute

$$\operatorname{Cond}(A)_{\infty} = \|A\|_{\infty} \|A^{-1}\|_{\infty},$$

where $||A||_{\infty}$ is the maximum-matrix norm of A.

- (b) (3 points) For what values of γ the solution of the linear system by using Gaussian elimination in a machine with double precision might not guarantee any digits of accuracy?
- (c) (4 points) Now, for a value of γ within the range from part (b) solve the linear system with an arbitrary $\mathbf{b} \in \mathbb{R}^2$ using Gaussian elimination and explain why A can still be considered well conditioned.
- 2. Consider the $n \times n$ Householder matrix H applied to a vector $\mathbf{a} \in \mathbb{R}^n$, where $H = I 2\mathbf{w}\mathbf{w}^{\mathrm{T}}$ for some unit vector \mathbf{w} , such that $H\mathbf{a} = \beta \mathbf{e}_1$, where $\mathbf{e}_1 = [1, 0, 0, \dots, 0]^{\mathrm{T}}$.
 - (a) (3 points) If H is real, show that $\beta = \pm \|\mathbf{a}\|_2$ and explain how to choose the sign.
 - (b) (4 points) Given **a** and β , explain how to construct **w**.
 - (c) (3 points) Construct the Householder matrix to transform the vector

$$\mathbf{a} = [1, 2, 2]^{\mathrm{T}}$$
.

- 3. Let g(x) be a continuously differentiable function with a fixed point at $x = \alpha$. Check the following properties:
 - (a) (3.5 points) If $0 < g'(\alpha) < 1$, then the convergence is monotone, that is, the error $x_k \alpha$ maintains a constant sign as k increases.
 - (b) (3.5 points) If $-1 < g'(\alpha) < 0$, then the convergence is oscillatory, that is, the error $x_k \alpha$ alternates sign as k increases.

- (c) (3 points) If $|g'(\alpha)| > 1$, then the iterates diverge. More precisely, if $g'(\alpha) > 1$, the sequence is monotonically diverging, while for $g'(\alpha) < -1$, it diverges with oscillatory sign.
- 4. Simpson's rule approximates the integral $I(f) = \int_a^b f(x)dx$ by using the Lagrange interpolating polynomial at the points (a, f(a)), (b, f(b)), and (c = (a + b)/2, f(c)).
 - (a) (5 points) Show that Simpson's rule is

$$I_2(f) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right).$$

(b) (5 points) Prove that the error expression $E_2(f)$ for Simpson's rule is given by

$$E_2(f) = -\frac{(b-a)^5}{2880} f^{(4)}(\xi),$$

for some $\xi \in (a, b)$.

5. For the initial value problem

$$y'(x) = f(x, y(x))$$

 $y(x_0) = y_0$
(1)

consider the methods

$$y_{i+1} = y_i + h \left[\alpha f(x_i, y_i) + (1 - \alpha) f(x_{i-1}, y_{i-1}) \right],$$
(2)

where $\alpha \in \mathbb{R}$, $y_i = y(x_i)$, and h is the step length.

- (a) (5 points) Find the leading term in the local truncation error of method (2) and determine the order of accuracy of the method as a function of α .
- (b) (5 points) For the special case $f(x, y) = \lambda y$ with $\lambda \in \mathbb{R}$ find the maximum h such that the method is stable for $\alpha = 1$. Note that h may depend on λ .