Minimum Rank of Subgraphs of Hypercubes

Héctor D. Torres Aponte, María Ñeco Arroyo

University of Puerto Rico – Río Piedras Campus

July 28, 2010
Matrices and Graphs

Definition

The graph $G(A) = (V, E)$ of $n \times n$ matrix A is a graph where:

1. $V = \{1, \ldots, n\}$
2. $E = \{ij : a_{ij} \neq 0\}$
3. Diagonal of A is ignored

Example:

\[
\begin{bmatrix}
3 & 1 & 0 & 0 \\
1 & 0 & 2 & 3 \\
0 & 2 & -1 & -5 \\
0 & 3 & -5 & 2
\end{bmatrix}
\]
Definition

The set of symmetric matrices described by a graph G (over \mathbb{R}) is $S(G) = \{ A \in S_n(\mathbb{R}) : G(A) = G \}$

Example:

\[
\begin{bmatrix}
? & a & b & c \\
a & ? & 0 & 0 \\
b & 0 & ? & 0 \\
c & 0 & 0 & ?
\end{bmatrix}
\]
Minimum Rank

Definition

The *minimum rank of* G is $mr(G) = \min\{\text{rank}(A) \mid A \in \mathcal{S}(G)\}$.

Example:

$$
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}
$$

$$mr(K_4) = 1$$
Maximum Nullity

Definition

The maximum nullity of G is $M(G) = \max\{\text{corank}(A) : A \in S(G)\}$

Example:

$$M(K_4) = 3$$
Maximum Nullity

Definition

The maximum nullity of G is $M(G) = \max\{\text{corank}(A) : A \in S(G)\}$

Example:

1. $M(K_4) = 3$
2. $mr(K_4) = 1$
3. $|K_4| = 4$

Note that $M(K_4) = |K_4| - mr(K_4)$
Induced Subgraph

Definition

A graph $G' = (V', E')$ is a *subgraph* of graph $G = (V, E)$ if $V(G') \subseteq V(G)$, $E(G') \subseteq E(G)$.

Example:

$$G = \begin{array}{c}
\begin{array}{c}
\text{Graph 1} \\
\text{Graph 2} \\
\text{Graph 3}
\end{array}
\end{array}$$
Induced Subgraph

Definition

A graph $G' = (V', E')$ is a **subgraph** of graph $G = (V, E)$ if $V(G') \subseteq V(G)$, $E(G') \subseteq E(G)$.

Example:

$G = \quad$ (Graph)

Definition

A subgraph $G[V']$ is an **induced subgraph** of G by V' if $\forall v_i, v_j \in V'$, $v_iv_j \in E(G) \Rightarrow v_iv_j \in E(G[V'])$.
Observation

1. If G' is an induced subgraph of G, then $mr(G') \leq mr(G)$.
2. $mr(G) + M(G) = |G|$
3. If $G = \bigcup_{i=1}^{h} G_i$ then $mr(G) \leq \sum_{i=1}^{h} mr(G_i)$.
Coloring

Color Change Rule

If \(G \) is a graph with each vertex colored either white or black, \(u \) is a black vertex of \(G \), and exactly one neighbor \(v \) of \(u \) is white, then change the color of \(v \) to black.

Example:
Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example:
Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example:
Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example:
Coloring

Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example:
Zero Forcing Set and Number

Definition

- **Derived coloring** is the result of applying the color-change rule until no more changes are possible.
- **Zero forcing set (ZFS)** $Z \subseteq V$, s.t. if initially $v_i \in Z$ are colored black and $v_j \notin Z$ are colored white, then the derived coloring is all black.
- **Zero forcing number** $Z(G) = \min\{|Z| : Z \text{ is a ZFS}\}$.

Theorem (AIM08)

For any graph G, $M(G) \leq Z(G)$.
Hypercube

Definition

The *Cartesian Product* of two graphs G and H, denoted $G \square H$, is the graph with vertex set $V(G) \times V(H)$ such that (u, v) is adjacent to (u', v') if and only if:

1. $u = u'$ and $vv' \in E(H)$, or
2. $v = v'$ and $uu' \in E(G)$

Example: $P_3 \square P_2

![Diagram of $P_3 \square P_2$]
Definition (Hypercube)

\[Q_0 = (V, E) \text{ where } |V| = 1, |E| = 0 \]

\[Q_d = Q_{d-1} \square P_2 \]

Example: \[Q_4 = Q_3 \square P_2 \]
Definition (Hypercube)

\[Q_0 = (V, E) \text{ where } |V| = 1, |E| = 0 \]
\[Q_d = Q_{d-1} \square P_2 \]

Example: \(Q_4 = Q_3 \square P_2 \)
Definition (Hypercube)

\[Q_0 = (V, E) \text{ where } |V| = 1, |E| = 0 \]

\[Q_d = Q_{d-1} \Box P_2 \]

Example: \(Q_4 = Q_3 \Box P_2 \)
Hypercube

Definition (Cut Complex)

A Cut Complex \mathcal{C} is a subgraph of Q_d for which there is a $(d - 1)$-dimensional hyperplane \mathcal{H} that strictly separates the vertices of \mathcal{C} from the rest of the vertices of Q_d.

Example:
Definition (Cut Complex)

A **Cut Complex** \mathcal{C} is a subgraph of Q_d for which there is a $(d - 1)$-dimensional hyperplane \mathcal{H} that strictly separates the vertices of \mathcal{C} from the rest of the vertices of Q_d.

Example:

![Diagram of a Cut Complex]

[Hypercube]

Héctor D. Torres Aponte, María Ñeco Arroyo
Minimum Rank of Subgraphs of the Hypercube
July 28, 2010
Definition (Cut Complex)

A **Cut Complex** C is a subgraph of Q_d for which there is a $(d - 1)$-dimensional hyperplane \mathcal{H} that strictly separates the vertices of C from the rest of the vertices of Q_d.

Example:

![Diagram of a cut complex](image)
Definition (Cut Complex)

A **Cut Complex** C is a subgraph of Q_d for which there is a $(d - 1)$-dimensional hyperplane \mathcal{H} that strictly separates the vertices of C from the rest of the vertices of Q_d.

Example:

1. Red vertices are in C_0.
2. Blue vertices are in C'_0.
3. Cut complexes are induced subgraph of Q_d.
Definition

The path cover number of $G, P(G)$, is the minimum number of vertex disjoint paths occurring as induced subgraphs of G that cover all the vertices of G; such a set of paths realizing $P(G)$ is called a minimal path cover.

Theorem (Johnson, Leal Duarte 99)

Let T be a tree,
$M(T) = P(T) = |T| - mr(T)$
Theorem

Let H be an induced subgraph of $Q_d = Q_{d-1} \square P_2$ such that $Q_{d-1} \subseteq H$ and H contains Q_{d-2} from the other copy of Q_{d-1}. Then $\text{mr} (H) = \text{mr} (Q_d) = 2^{d-1}$ and $M(H) = Z(H) = |H| - 2^{d-1}$.

Example:
Example:

- H is an induced subgraph of Q_4
 - $\text{mr}(H) \leq \text{mr}(Q_4)$
 - $\text{mr}(H) \leq 8$
- Order of graph: $|H| = 15$
- Zero forcing number: $Z(H) \leq 7$
- $M(H) \leq Z(H) \Rightarrow M(H) \leq 7$
- $\text{mr}(H) + M(H) = |H|$
 - $\Rightarrow \text{mr}(H) = |H| - M(H)$
 - $\Rightarrow \text{mr}(H) \geq 15 - 7 = 8$
 - $\Rightarrow \text{mr}(H) = 8 = \text{mr}(Q_4)$
- $M(H) = |H| - \text{mr}(H)$
- $M(H) = 7 = Z(H)$
Conjecture

If H is a cut-complex of Q_d then $M(H) = Z(H)$.

For $d = 1, 2, 3, 4$ and H a cut-complex of Q_d; $mr(H), M(H), Z(H)$ have been computed.
Remark

There is an example of an induced subgraph H of Q_5 with $M(H) < Z(H)$. H is not a cut-complex.

Acknowledgement

- Mentors: Dr. Leslie Hogben, Dr. M. Reza Emamy-K.
- Research Assistant: Jason Smith
- National Science Foundation-
 - Alliance Grant DMS:0502354