Minimum Rank of n-Dimensional Hypercube Cut-Complex

Héctor D. Torres-Aponte

University of Puerto Rico – Rio Piedras Campus

June 2, 2011
Basic Definitions

Definition

A **graph** G is an ordered tripled (V_G, E_G, ψ_G) consisting of a non-empty set of vertices denoted by V_G and a set E_G, disjoint from V_G, of edges and an incidence function ψ_G that associate with each edge of G an unordered pair of vertices of G, note that this unordered pair of vertices are not necessarily distinct.

Definition

A graph is **finite** if both its vertex set and edge set are finite.

Definition

The **order** of a graph G is defined by the number of vertices in V_G and denoted by $|G|$.
Isomorphic Graphs

Definition

Two graphs G and H are isomorphic ($G \cong H$) if there exist a one-to-one correspondence between their vertex set which preserves adjacency.
Induced Subgraphs

Definition

A graph $G' = (V', E')$ is a **subgraph** of graph $G = (V, E)$ if $V(G') \subseteq V(G)$, $E(G') \subseteq E(G)$.

![Graphs](image)

Figure: Graph, Induced subgraph, subgraph

Definition

A subgraph H of a graph G is said to be **induced** if for any pair of vertices v_i and v_j, $\{v_i, v_j\}$ is an edge of H if and only if $\{v_i, v_j\}$ is an edge of G.
Graphs Operations

Definition

- The complement \overline{G} of a graph G also has $V(G)$ as its vertex set, but two points are adjacent in \overline{G} if and only if they are not adjacent in G, denoted by $\overline{G} = (V_G, \overline{E}_G)$.

- The union of graphs $G_i = (V_{G_i}, E_{G_i})$ is defined by

$$\bigcup_{i=1}^{n} G_i = \left(\bigcup_{i=1}^{n} V_{G_i}, \bigcup_{i=1}^{n} E_{G_i} \right) .$$
Graphs Operations

Definition

The **Cartesian product** of two graphs \(G \) and \(H \) \(G \Box H \) is a graph such that:

- the vertex set of \(G \Box H \) is the Cartesian product \(V(G) \times V(H) \); and
- any two vertices \((u, u')\) and \((v, v')\) are adjacent in \(G \Box H \) if and only if either
 - \(u = v \) and \(u' \) is adjacent with \(v' \) in \(H \), or
 - \(u' = v' \) and \(u \) is adjacent with \(v \) in \(G \).
Example of Cartesian product

Figure: $P_3 \Box P_2$
We can define a hypercube using a Cartesian product,

Definition

Let $Q_0 = (V, E)$ where $|V| = 1, |E| = 0$. We can define a n-dimensional hypercube $Q_n = Q_{n-1} \square P_2$.

The **hypercube graph** Q_n is a regular graph (that is, each vertex of Q_n is incidence to exactly n edges) with 2^n vertices which correspond to the subsets of a set with n elements.

Example ($Q_4 = Q_3 \square P_2$)
We can define a hypercube using a Cartesian product,

Definition

\[Q_0 = (V, E) \text{ where } |V| = 1, |E| = 0. \text{ We can define a } n\text{-dimensional hypercube } Q_n = Q_{n-1} \Box P_2. \]

The **hypercube graph** \(Q_n \) is a regular graph (that is, each vertex of \(Q_n \) is incidence to exactly \(n \) edges) with \(2^n \) vertices which correspond to the subsets of a set with \(n \) elements.

Example \(Q_4 = Q_3 \Box P_2 \).
We can define a hypercube using a Cartesian product,

Definition

Let $Q_0 = (V, E)$ where $|V| = 1$, $|E| = 0$. We can define a n-dimensional hypercube $Q_n = Q_{n-1} \Box P_2$.

The **hypercube graph** Q_n is a regular graph (that is, each vertex of Q_n is incidence to exactly n edges) with 2^n vertices which correspond to the subsets of a set with n elements.

Example ($Q_4 = Q_3 \Box P_2$).
Definition

A Cut Complex C is a subgraph of Q_n for which there is a $(n - 1)$-dimensional hyperplane H that strictly separates the vertices of C from the rest of the vertices of Q_n.
A \textbf{Cut Complex} C is a subgraph of Q_n for which there is a $(n-1)$-dimensional hyperplane H that strictly separates the vertices of C from the rest of the vertices of Q_n.
A **Cut Complex** \mathcal{C} is a subgraph of Q_n for which there is a $(n - 1)$-dimensional hyperplane \mathcal{H} that strictly separates the vertices of \mathcal{C} from the rest of the vertices of Q_n.
Definition

A **Cut Complex** \mathcal{C} is a subgraph of Q_n for which there is a $(n - 1)$-dimensional hyperplane \mathcal{H} that strictly separates the vertices of \mathcal{C} from the rest of the vertices of Q_n.

1. **Red** vertices are in \mathcal{C}_0.
2. **Blue** vertices are in \mathcal{C}_0'.
3. Cut complexes are induced subgraph of Q_n.
Remark

Note that not all induced subgraph are a cut-complex but all cut-complex is an induced subgraph.

Figure: Robot Graph
Definition

The graph $G(A) = (V, E)$ of $n \times n$ matrix A is a graph where:

1. $V = \{1, \ldots, n\}$
2. $E = \{ij : a_{ij} \neq 0\}$
3. Diagonal of A is ignored

Example

$$
\begin{bmatrix}
3 & 1 & 0 & 0 \\
1 & 0 & 2 & 3 \\
0 & 2 & 1 & 0 \\
0 & 3 & 2 & 0 \\
\end{bmatrix}
$$

By: Héctor D. Torres Aponte
Symmetric Matrices

Definition

The set of symmetric matrices described by a graph G (over \mathbb{R}) is $S(G) = \{ A \in S_n(\mathbb{R}) : G(A) = G \}$

Example

\[
\begin{bmatrix}
? & a & b & c \\
 a & ? & 0 & 0 \\
b & 0 & ? & 0 \\
c & 0 & 0 & ?
\end{bmatrix}
\]

Note that $? \in \mathbb{R}$ and $a, b, c \in \mathbb{R} \setminus \{0\}$.
Theorem (Theorem 2.2 in Zhang)

Let M be a square matrix partitioned as:

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Then $\det(M) = \det(AD - CB)$, if $AC = CA$.

Definition

Define the **Kronecker product** $A \otimes B$ of two matrices A and B to be the matrix we get by replacing the ij - entry of A by $a_{ij}B$, for all i and j.

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$
For the Cartesian product of two graphs G and H we can define the adjacency matrix as (see Section 9 in Godsil & Royle):

$$A(G \square H) = A(G) \otimes I + I \otimes A(H)$$

where I is the identity matrix.

Theorem

Let G and H be a graphs with n and k vertices respectively. Let $A \in S(G)$ and $B \in S(H)$. Then $A \otimes I_n + I_k \otimes B \in S(G \square H)$.

By: Héctor D. Torres Aponte
Minimum Rank

Definition

The *minimum rank of G is* \(mr(G) = \min \{ \text{rank}(A) \mid A \in S(G) \} \).

Example

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

\[mr(K_4) = 1\]

By: Héctor D. Torres Aponte
Maximum Nullity

Definition

The *maximum nullity* of G is defined by:

$$M(G) = \max \{ \text{corank}(A) : A \in S(G) \}$$

Example

1. $M(K_4) = 3$

Note that $M(K_4) = |K_4| - \text{mr}(K_4)$
Definition

The maximum nullity of G is defined by:

$$M(G) = \max \{ \text{corank}(A) : A \in S(G) \}$$

Example

1. $M(K_4) = 3$
2. $mr(K_4) = 1$
3. $|K_4| = 4$

Note that $M(K_4) = |K_4| - mr(K_4)$
Minimum Rank and Maximum Nullity Properties

The following properties are well known and straightforward:

Proposition

1. If G' is an induced subgraph of G, then $mr(G') \leq mr(G)$.
2. $mr(G) + M(G) = |G|$
3. If $G = \bigcup_{i=1}^{h} G_i$ then $mr(G) \leq \sum_{i=1}^{h} mr(G_i)$.
4. Let T be a tree. $M(T) = |T| - mr(T)$.
5. Let C_n be a n-cycle. $mr(C_n) = n - 2$.
6. Let P_n be a n-path. $mr(P_n) = n - 1$.
Theorem (2.8 Survey07)

If G is a connected graph, $mr(G) \leq 2$ if and only if G does not contain as an induced subgraph any of P_4, Dart, \times, or $K_{3,3,3}$.

Figure: P_4, Dart, \times, $K_{3,3,3}$
Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example
Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example
Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example

By: Héctor D. Torres Aponte
Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example

By: Héctor D. Torres Aponte
Color Change Rule

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black.

Example
Zero Forcing Set and Number

Definition

- **Derived coloring** is the result of applying the color-change rule until no more changes are possible.
- **Zero forcing set (ZFS)** $Z \subseteq V$, s.t. if initially $v_i \in Z$ are colored black and $v_j \notin Z$ are colored white, then the derived coloring is all black.
- **Zero forcing number** $Z(G) = \min\{|Z| : Z \text{ is a ZFS}\}$.

Theorem (Theorem 2.4 AIM08)

*For any graph G, $M(G) \leq Z(G)$.***
Theorems of Zero Forcing Number

Theorem (Proposition 2.5 AIM 08)

For any graphs G and H,

\[Z(G \sqcup H) \leq \min\{Z(G) | H|, Z(H) | G|\}. \]

The following corollaries are in consequence of Theorem

Corollary (Corollary 2.6 AIM08)

\[Z(G \sqcup P_n) \leq \min\{|G|, Z(G) n\}. \]

Corollary (Corollary 2.7 AIM08)

\[Z(Q_n) \leq 2^{n−1} \]

Theorem (Theorem 3.1 AIM08)

For the n-dimensional hypercube, M(Q_n) = Z(Q_n) = 2^{n−1}.
mr \((G) \) using induced subgraph

Let \(G = C_10' \), note that \(|G| = 10 \) and \(Z(G) \leq 4 \) then by Theorem 2.4AIM08 \(M(G) \leq 4 \) then \(mr(G) \geq 6 \). Moreover, \(G \) is an induced subgraph of \(C_{11}' \) and by Theorem of subgraphs (Survey07) then:

\[
\begin{align*}
mr(G) & \leq mr(C_{11}') \\
mr(G) & \leq 6
\end{align*}
\]

since \(mr(G) \leq 6 \) and \(mr(G) \geq 6 \) then \(mr(G) = 6 \).
Let $T = C'_5$, note that $|T| = 5$ and $Z(T) \leq 3$, by Theorem 2.4 (AIM08) we obtain that $M(T) \leq 3$. By Theorem of tree (Survey07) we have $\text{mr}(T) \geq |T| - M(T) \geq 2$. Since T is a connected graph by Theorem 2.1.6 we have that $\text{mr}(T) \leq 2$ then $\text{mr}(T) = 2$.

mr (G) using trees
Let \(G = C_{10} \), note that \(|G| = 10 \) and \(Z(G) \leq 4 \) then by AIM08 \(M(G) \leq 4 \) so \(mr(G) \geq 6 \). Let \(G_1 \) the graph with blue edges (\(C_4 \)) so, \(mr(G_1) = 2 \) and let \(G_2 \) the graph with red edges as \(G_2 \) (\(mr(G_2) = 4 \)), note that \(G = G_1 \cup G_2 \). By Proposition (Survey07)

\[
\begin{align*}
 mr(G) & \leq mr(G_1) + mr(G_2) \\
 mr(G) & \leq 2 + 4 \\
 mr(G) & \leq 6
\end{align*}
\]

since \(mr(G) \leq 6 \) and \(mr(G) \geq 6 \) then \(mr(G) = 6 \).
mr (G) using Mathematica and SAGE

Figure: C'_{11} with an induced path
Theorem

Let H be an induced subgraph of $Q_n = Q_{n-1} \boxtimes P_2$ such that $Q_{n-1} \subseteq H$ and H contains Q_{n-2} from the other copy of Q_{n-1}. Then $mr(H) = mr(Q_n) = 2^{n-1}$ and $M(H) = Z(H) = |H| - 2^{n-1}$.

Proof.

Let $\bar{f} = Q_{n-1}$ such that $\bar{f} \subseteq H$ and H contains $Q_{n-2} \subseteq f$. Since H be induced by Q_n then $mr(H) \leq mr(Q_n) = 2^{n-1}$. Exhibiting ZFS of $|H| - |\bar{f}|$, then we obtain $Z(H) = |H| - 2^{n-1}$ We know that

$$
mr(H) + M(H) = |H|
$$

$$
mr(H) = |H| - M(H) \geq |H| - (|H| - 2^{n-1})
$$

$$
mr(H) \geq 2^{n-1}
$$

therefore $mr(H) = 2^{n-1}$.
Faces Theorem

- H is an induced subgraph of Q_4
 - $\text{mr}(H) \leq \text{mr}(Q_4)$
 - $\text{mr}(H) \leq 8$
- Order of graph: $|H| = 15$
- Zero forcing number: $Z(H) \leq 7$
- $M(H) \leq Z(H) \Rightarrow M(H) \leq 7$

- $\text{mr}(H) + M(H) = |H|$
 - $\Rightarrow \text{mr}(H) = |H| - M(H)$
 - $\Rightarrow \text{mr}(H) \geq 15 - 7 = 8$
 - $\Rightarrow \text{mr}(H) = 8 = \text{mr}(Q_4)$
- $M(H) = |H| - \text{mr}(H)$
- $M(H) = 7 = Z(H)$
Theorem

\[M(Q_n \Box P_3) = Z(Q_n \Box P_3) = 2^n \]

Proof: We know that \(\text{mr}(Q_n) = 2^{n-1} \). Note that \(Q_n \Box P_3 \) can be embedded in \(Q_{n+2} \) then:

\[
\text{mr}(Q_n \Box P_3) \leq \text{mr}(Q_{n+2}) = 2^{(n+2)-1} \leq 2^{n+1} = 2 \cdot 2^n
\]

By Theorem 2.6 (AIM08) we have:

\[
Z(Q_n \Box P_3) \leq \min \{|Q_n|, Z(Q_n)\} \leq \min \{2^n, 2^{n-1} \cdot 3\} \leq 2^n
\]

Then \(M(Q_n \Box P_3) \leq 2^n \).
Since $|Q_n \square P_3| = 3 \cdot 2^n$,

\[
\begin{align*}
M(Q_n \square P_3) &= |Q_n \square P_3| - \text{mr}(Q_n \square P_3) \\
M(Q_n \square P_3) &\geq 3 \cdot 2^n - 2 \cdot 2^n \\
M(Q_n \square P_3) &\geq 2^n (3 - 2) \\
M(Q_n \square P_3) &\geq 2^n
\end{align*}
\]

Then $M(Q_n \square P_3) = 2^n$.
Table with results

| Cut-complex | $|G|$ | $mr(G)$ | $M(G)$ | $Z(G)$ |
|-------------|------|---------|--------|--------|
| C_1 | 1 | 0 | 1 | 1 |
| C_2 | 2 | 1 | 1 | 1 |
| C_3 | 3 | 2 | 1 | 1 |
| C_4 | 4 | 2 | 2 | 2 |
| C_5 | 5 | 3 | 2 | 2 |
| C_6 | 6 | 4 | 2 | 2 |
| C_7 | 7 | 4 | 3 | 3 |
| C_8 | 8 | 4 | 4 | 4 |
| C_8' | 8 | 5 | 3 | 3 |
| C_7' | 7 | 5 | 2 | 2 |
| C_7'' | 8 | 5 | 3 | 3 |
| C_8'' | 8 | 5 | 3 | 3 |
| C_6' | 6 | 4 | 2 | 2 |
| C_4' | 4 | 2 | 2 | 2 |
| C_5' | 5 | 2 | 3 | 3 |
Table with results

<table>
<thead>
<tr>
<th>Cut-complex</th>
<th></th>
<th>G</th>
<th>mr (G)</th>
<th>M (G)</th>
<th>Z (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{15}</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>C_{14}</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>C_{13}</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>C_{12}</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C_{11}</td>
<td>11</td>
<td>(7, 8)</td>
<td>≤ 4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C_{10}</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C_{9}</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C'_{9}</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C''_{9}</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C_{8}</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C'_{10}</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C'_{12}</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C'_{11}</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Conjecture

If H is a cut-complex of Q_n then $M(H) = Z(H)$.

For $d = 1, 2, 3, 4$ and H a cut-complex of Q_n; $mr(H), M(H), Z(H)$ have been computed.

Acknowledgement

- Mentors:
 - Dr. Leslie Hogben (Iowa State University)
 - Dr. M. Reza Emamy-K.(University of Puerto Rico - Río Piedras Campus)

- Research Partner: María Ñeco Arroyo

This research was partially supported by:

- Iowa State University
- National Science Foundation – Alliance Grant DMS-0502354.