
Project 1: CCOM 3030

Dr. A. Nieves-González

University of Puerto Rico
Ŕıo Piedras Campus

Department of Computer Science

December 2, 2014

Due date: December 12, 2014.

This project consists on solving some of the problems listed below. In any problem that asks to write or
develop an algorithm, it must be shown in pseudocode, and implemented in either R or MATLABr.

1 Problem set 1

Do all of the following four problems.

1. Write an algorithm that given the price of an item and the local sales tax, it returns the price of the
item sales tax included.

2. Develop an algorithm that given the hours worked per week, and the hourly pay rate, it returns the
gross pay. The rules for determining gross pay are as follows: Regular pay rate for the hours up to 40;
time-and-a-half for hours over 40 up to 54; and double time for hours over 54. After displaying the
output the algorithm must ask the user wheter he/she wants to do another computation. Repeat the
entire set of operations until the user says no.

3. Median.
Write an algorithm to compute the median of a set of observations. The median of a set of observations
{x1, x2, . . . , xn} is the value for which half of the observations is less than such value. Compare the
your result and the performance of your function with the function that computes the median that is
already built-in in R or MATLABr. You should make plots and tables of the running time of each
program as a function of the size of the list of numbers. Hint: you can use the Selection Sort function
discussed in class or the Bubble Sort as part of the algorithm.

4. Fibonacci sequence.
The Fibonacci sequence is a sequence of integers defined as follows: the first two numbers are both 1.
After that, each number in the sequence is sum of the two preceding numbers. Thus, if F (n) stands
for the nth value in the sequence then we have

F (n) =

{
F (n− 1) + F (n− 2) if n > 2
1 if n = 1 or n = 2

(1)

It can be demonstrated (by strong induction) that a formula for F (n) is

F (n) =
√

5
5

(
1 +
√

5
2

)n

−
√

5
5

(
1−
√

5
2

)n

(2)

The first few values of the sequence are: 1, 1, 2, 3, 5, 8, 13, 21, . . . Do the following:

1

CCOM 3030 Project 1 2

(a) Implement two functions: one that computes the nth value of the Fibonacci sequence using the
definition (equation 1), and other that uses equation 2.

(b) Compute the value of the sequence for different n, e.g., 5, 10, 15, 20, 25, 30. And compute the
running time for each calculation using each one of the functions (make a table). Comment on
the running time of each of the functions. Also, what are the advantages and disavantages of
using one equation versus the other (also think about

√
5)?

(c) Verify numerically that the ratio of F (n + 1)/F (n) converges to the golden ratio: (1 +
√

5)/2.
You can use the R-script given at the end of this document or you can write your own. In the
given script FiboSeq(n) is the function that you wrote to compute the nth value un the sequence.
What happens if you uncomment the three lines below the Slow comment and comment the lines
below the Fast comment inside the for loop? Give an explanation of the observed phenomenon.

Hint: Equation 1 can be implemented in a way akin to the way we implemented the factorial function
(n!) in class.

2 Problem set 2

Do at least two of the the following four problems.

1. Insertion Sort.
Sorting is a very important problem in computer science. This problem deals with a simple, important,
but not very efficient sorting algorithm: the insertion sort. Given a list of integers of size n the insertion
sort is:

Algorithm 1 Insertion Sort.
Input: List of integers u = (u1, . . . , un) of length n
Output: Ordered list of integers u (ascending order)
for i = 1, . . . , n do

j ← i
while j > 1 AND uj−1 > uj do

swap(uj−1, uj)
j ← j − 1

end while
end for

Observe that the swap function (or procedure) just exchange the value of its arguments.

(a) Implement the insertion sort.

(b) Compare the insertion sort, the selection sort (discussed in class), and the built-in sort functions
in terms of performance. You should make plots and tables of the running time of each program
as a function of the size of the list of numbers. Note that in R you can choose between quick sort
and shell sort as the sorting algorithm (in MATLAB a quick sort is the available method) which
are very efficient, you should try them both. You can use a script simmilar to the one given at
the end of this document to plot your results.

2. Bubble Sort.
Sorting is a very important problem in computer science. This problem deals with a simple, important,
but not very efficient sorting algorithm: the bubble sort. Given a list of integers of size n the bubble
sort is:

CCOM 3030 Project 1 3

Algorithm 2 Bubble Sort.
Input: List of integers u = (u1, . . . , un) of length n
Output: Ordered list of integers u (ascending order)
IsSwapped← TRUE
while IsSwapped = TRUE do

IsSwapped← FALSE
for i = 2, . . . , n do

if ui−1 > ui then
swap(ui−1, ui)
IsSwapped← TRUE

end if
end for
n← n− 1

end while

(a) Implement the bubble sort.

(b) Also, compare the bubble sort, the selection sort, and the built-in sort functions in terms of
performance. You should make plots and tables of the running time of each program as a function
of the size of the list of numbers. Note that in R you can choose between quick sort and shell
sort as the sorting algorithm (in MATLAB a quick sort is the available method) which are very
efficient, you should try them both. You can use a script simmilar to the one given at the end of
this document to plot your results.

3. Bisection method.
The bisection method is a root finding method based upon the intermediate value theorem. Let f be
a function f : [a, b]→ R. The root of a function is a value x∗ such that f(x∗) = 0. Suppose that f is
continuous on [a, b]. The bisection method is defined as:

Algorithm 3 Bisection Method
Input: A continuous function f : [a, b] → R, the endpoints of interval [a, b] such that f(a)f(b) < 0, the
maximum number of iterations nmax, and a specified tolerance tol > 0.
Output: xk, an approximation of a root of f .
k ← 0, err ← tol + 1
a0 ← a, b0 ← b, x0 ← (a0 + b0)/2
while k ≤ nmax AND err > tol do

if f(ak)f(xk) < 0 then
ak+1 ← ak

bk+1 ← xk

else
if f(ak)f(xk) > 0 then

ak+1 ← xk

bk+1 ← bk

else
ak+1 = xk − tol
bk+1 = xk + tol

end if
end if
xk+1 ← (ak+1 + bk+1)/2
err ← 0.5|bk − ak|
k ← k + 1

end while

CCOM 3030 Project 1 4

Use the bisection method to find the roots of the following continuous functions:

(a) f(x) = x2 − 1

(b) f(x) = x3 − 3x2 + 2x. Whose roots lie within [0, 2].

(c) The Legendre polynomial of degree 5

f(x) =
x

8
(63x4 − 70x2 + 15),

whose roots lie within interval (−1, 1). You can start with a0 = 0.6, b0 = 1, nmax = 100, and
tol = 10−10 and you should get the approximation of the root x∗ ≈ 0.9062.

Try different initial guesses for each of the different problems, and make a table with the sucessive
approximations (one table for each initial guess). Try to find the all the roots, if you cannot, explain
what difficulties you encounter.

4. The Chord Method.
The chord method is a root finding method based upon a truncation of a Taylor’s series expansion
around a root of the function f . Let f be a function f : [a, b] → R. The root of a function is a value
x∗ such that f(x∗) = 0. Suppose f is differentiable on [a, b]. The chord method is defined as:

Algorithm 4 Chord Method
Input: A differentiable function f : [a, b] → R, an initial guess x0, the endpoints of interval [a, b], the
maximum number of iterations nmax, and a specified tolerance tol > 0.
Output: xk, an approximation of a root of f .
k ← 0, err ← tol + 1
while k ≤ nmax AND err > tol do

xk+1 ← xk −
(

f(b)−f(a)
b−a

)−1

f(xk)
err ← |xk+1 − xk|
k ← k + 1

end while

Use the chord method to find the roots of the following continuous functions:

(a) f(x) = x2 − 1

(b) f(x) = x3 − 3x2 + 2x. Whose roots lie within [0, 2].

(c) The Legendre polynomial of degree 5

f(x) =
x

8
(63x4 − 70x2 + 15),

whose roots lie within interval (−1, 1). You can start with x0 = 0.85, nmax = 100, and tol = 10−10

and you should get the approximation of the root x∗ ≈ 0.9062.

Try different initial guesses for each of the different problems, and make a table with the sucessive
approximations (one table for each initial guess). Try to find the all the roots, if you cannot, explain
what difficulties you encounter.

CCOM 3030 Project 1 5

3 Additional remarks and R scripts

3.1 Remarks on how two measure running time and pass functions as arguments
of another function.

• How to measure running time?

– In MATLABr: Use the functions tic and toc. For example:

starttime = tic;
Some MATLABr Code

elapsedtime = toc;
RunTime = elapsedtime− starttime

– In R: Use the proc.time() function. For example:

starttimes = proc.time()
Some R Code

EndTimes = proc.time()− starttimes

• How to pass a function as an argument (input) to another function?

– In MATLABr: Use function handle.

– In R: Define the function in another file as shown in class, issue the source(’filename.r’) where
’filename.r’ is where the function where the function is defined, pass the function as a standard
argument.

3.2 R Scripts

3.2.1 R script number 1.

We are going to v e r i f y t h a t the r a t i o o f s u c e s s i v e terms o f the
Fibonacci sequence converges to the go lden r a t i o .
source (”FiboSeq . r ”)
An approximation to the go lden r a t i o .
golden ra t = (1 + sqrt (5))/2

N = 1000
Rat = rep (0 ,N)
i = 2
s t a r t t i m e s = proc . time ()
Fprev = FiboSeq (1)
Fnext = FiboSeq (2)
for (i in 2 :N)
{ # Slow

Fnext = FiboSeq (i)
Rat [i −1] = Fnext/Fprev
Fprev = Fnext
Fast
Rat [i −1] = Fnext/Fprev
temp = Fnext
Fnext = Fnext + Fprev

CCOM 3030 Project 1 6

Fprev = temp

}
Rat [N] = Fnext/Fprev
endtimes = proc . time () − s t a r t t i m e s
I t e r a t i o n s = 1 :N
e r r = abs (golden ra t − Rat)

Plo t s
par (mfrow=c (2 , 1))
plot (I t e r a t i o n s , Rat)
abline (a=golden rat , b=0)
plot (I t e r a t i o n s , e r r)

3.2.2 R script number 2.

Scr i p t to compare s o r t i n g programs
source (” I n s e r S o r t . r ”)
source (” BubbleSort . r ”)
source (” FindLargest . r ”)
source (” S e l e c t i o n S o r t . r ”)
p = 3 # the l i s t o f numbers are o f s i z e s 10ˆ1 , . . . , 1 0ˆ p
m = seq (1 , p ,by=1)
t imes = matrix (rep (0 ,5∗p) ,nrow=5,ncol=p , byrow=TRUE)
N = as . integer (rep (0 , length (m)))
proct imeindex = 3

for (i in 1 : length (m))
{ N[i] = as . integer (10ˆm[i])

uarr = seq (N[i] , 1 ,by=−1)
oarr = uarr
s t = proc . time ()
oarr = I n s e r S o r t (uarr)
tend = proc . time ()
t e l a p = tend − s t
t imes [1 , i] = t e l a p [proct imeindex]

uarr = seq (N[i] , 1 ,by=−1)
oarr = uarr
s t = proc . time ()
oarr = S e l e c t i o n S o r t (uarr)
tend = proc . time ()
t e l a p = tend − s t
t imes [2 , i] = t e l a p [proct imeindex]

uarr = seq (N[i] , 1 ,by=−1)
oarr = uarr
s t = proc . time ()
oarr = BubbleSort (uarr)
tend = proc . time ()
t e l a p = tend − s t
t imes [3 , i] = t e l a p [proct imeindex]

uarr = seq (N[i] , 1 ,by=−1)

CCOM 3030 Project 1 7

oarr = uarr
s t = proc . time ()
oarr = sort . i n t (uarr , method=” quick ”)
tend = proc . time ()
t e l a p = tend − s t
t imes [4 , i] = t e l a p [proct imeindex]

uarr = seq (N[i] , 1 ,by=−1)
oarr = uarr
s t = proc . time ()
oarr = sort . i n t (uarr , method=” s h e l l ”)
tend = proc . time ()
t e l a p = tend − s t
t imes [5 , i] = t e l a p [proct imeindex]

}

Plo t s
names = c (” I n s e r t Sort ” , ” S e l e c t i o n Sort ” , ”Bubble Sort ” ,

”Quick Sort ” , ” S h e l l Sort ”)
par (mfrow=c (2 , 3))
for (j in 1 : 5)
{

plot (N, t imes [j ,] , main=names [j])
}

