Lecture 1

Introduction to sampling distributions (distribuciones de muestreo)

7.1 Sampling Error: What It Is and Why It Happens

- The sample may not be a perfect representation of the population
- Sampling Error
 - The difference between a measure computed from a sample (a statistic) and the corresponding measure computed from the population (a parameter)

Sampling error =
$$\bar{x} - \mu$$

- \bar{x} Sample mean
- μ Population mean

Sampling Error

chapter 7

Parameter

- A measure computed from the entire population. As long as the population does not change, the value of the parameter will not change. It can also be interpreted as a constant of the mathematical model used to study the population or system.
- Simple Random Sample
 - A sample selected in such a manner that each possible sample of a given size has an equal chance of being selected.

Population and Sample Mean

Population Mean

- μ Population mean
- x Values in the population
- N Population size

Sample Mean

- \bar{x} Sample mean
- x Sample values selected from the population
- n Sample size

Example: If the population mean is $\mu = 98.6$ degrees and a sample of n = 5 temperatures yields a sample mean of $\overline{x} = 99.2$ degrees, then the sampling error is:

 $\bar{x} - \mu = 99.2 - 98.6 = 0.6$ degrees

Population and Sample Mean

- The population mean previously defined can also be seen as the mean or expected value of discrete random variable.
- The sample mean previously defined is called the arithmetic mean of a finite set of numbers.

Sampling Error

- The size of the sampling error depends on which sample is selected.
- The sampling error may be positive or negative.
- There is potentially a different \bar{x} for each possible sample.

7.2 Sampling Distribution of the Mean

- Sampling Distribution
 - The distribution of all possible values of a statistic for a given sample size that has been randomly selected from a population
- Excel tool can be used to build sampling distribution

Using Excel for Sampling Distribution

- 1. Open file.
- 2. Select Data > Data Analysis
- 3. Select Sampling
- 4. Define the population data range.
- 5. Select Random, Number of Samples: 10.
- 6. Select Output Range: D2.
- 7. Compute sample mean using Average function.

Average Value of Sample Means

• Theorem 1:

 For any population, the average value of all possible sample means computed from all possible random samples of a given size from the population will equal the population mean

$$\mu_{\bar{x}} = \mu$$

 Unbiased Estimator: A characteristic of certain statistics in which the average of all possible values of the sample statistic equals parameter

Standard Deviation of Sample Means

• Theorem 2:

For any population, the standard deviation of the possible sample means computed from all possible random samples of size *n* is equal to the population standard deviation divided by the square root of the sample size. Also called standard error.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Consistent Estimator

- An unbiased estimator is said to be a consistent estimator if the difference between the estimator and the parameter tends to become smaller as the sample size becomes larger.
- Recall definition of the standard deviation or variance.

z-Value for Sampling Distribution of \bar{x}

- The relative distance that a given sample mean is from the center can be determined by standardizing the sampling distribution
- A z-value measures the number of standard deviations a value is from the mean

- \bar{x} Sample mean
- $\mu\,$ Population mean
- σ Population standard deviation
- n Sample size

z-Value Corrected for Finite Population

- The sample is large relative to the size of the population (greater than 5% of the population size), and the sampling is being done without replacement
- Use the finite population correction factor to calculate z-value

N- Population size

$$n$$
 - Sample size
 $\sqrt{\frac{N-n}{N-1}}$ - Finite population correction factor

- Population may not be normally distributed
- Theorem 4: For simple random samples of *n* observations taken from a population with mean μ and standard deviation σ , regardless of the population's distribution, provided the sample size is sufficiently large, the distribution of the sample means, \bar{x} , will be approximately normal with a mean equal to the population mean ($\mu_{\bar{x}} = \mu$) and a standard deviation equal to the population standard deviation divided by the square root of the sample size ($\sigma_{\bar{x}} = \sigma/\sqrt{n}$).
- The larger the sample size, the better the approximation to the normal distribution.

 Example: Uniform Population Distribution

 Example: Triangular Population Distribution

 Example: Skewed Population Distribution

- The sample size must be "sufficiently large"
- If the population is quite symmetric, then sample sizes as small as 2 or 3 can provide a normally distributed sampling distribution
- If the population is highly skewed or otherwise irregularly shaped, the required sample size will be larger
- A conservative definition of a sufficiently large sample size is n ≥ 30

chapter 7

Example...

7.3 Sampling Distribution of a Proportion

- Population Proportion
 - The fraction of values in a population that have a specific attribute
- Sample Proportion
 - The fraction of items in a sample that have the attribute of interest

- p Population proportion
- X Number of items in the population having the attribute of interest
- N Population size

- \bar{p} Sample proportion
- *x* Number of items in the sample with the attribute of interest
- n Sample size

Sampling Error for a Proportion

Sampling Error = $\bar{p} - p$

- p Population proportion
- $ar{p}$ Sample proportion
- Step 1: Determine the population proportion
- Step 2: Compute the sample proportion
- Step 3: Compute the sampling error

Sampling Distribution of \bar{p}

- The best estimate of the population proportion will be \bar{p} , the sample proportion
- Any inference about how close your estimate is to the true population value will be based on the distribution of this sample proportion, \bar{p} , whose underlying distribution is the binomial
- If the sample size is sufficiently large such that *np* ≥ 5 and *n*(1 − *p*) ≥ 5 then the normal distribution can be used as a reasonable approximation to the discrete binomial distribution

Sampling Distribution of \bar{p}

Mean
$$= \mu_{\bar{p}} = p$$

Standard error =
$$\sigma_{\bar{p}} = \sqrt{\frac{p(1-p)}{n}}$$

- p Population proportion
- *n* Sample size
- \bar{p} Sample proportion

chapter 7

Sampling Distribution of \bar{p}

Theorem 5: Regardless of the value of the population proportion, p, (with the obvious exceptions of p = 0 and p = 1), the sampling distribution for the sample proportion, \bar{p} , will be approximately normally distributed with $\mu_{\bar{p}} = p$ and $\sigma_{\bar{p}} = \sqrt{\frac{p(1-p)}{n}}$ providing $np \ge 5$ and $n(1-p) \ge 5$. The approximation to the normal distribution improves as the sample size increases and *p* approaches 0.50.

chapter 7

z-Value for Sampling Distribution of \bar{p}

Z - Number of standard errors \bar{p} is from p

 \bar{p} - Sample proportion

 $\sigma_{\bar{p}} = \sqrt{\frac{p(1-p)}{n}}$ - Standard error of the sampling distribution p - Population proportion

 $\sigma_{\bar{n}}$

If the sample size *n* is greater than 5% of the population size, the standard error of the sampling distribution should be computed using the finite population correction factor

$$\sigma_{\bar{p}} = \sqrt{\frac{p(1-p)}{n}} \sqrt{\frac{N-n}{N-1}}$$

Using the Sample Distribution for Proportion

- Steps to find probabilities associated with a sampling distributions for proportions:
 - Step 1: Determine the population proportion
 - Step 2: Calculate the sample proportion
 - Step 3: Determine the mean and standard deviation of the sampling distribution
 - Step 4: Define the event of interest
 - Step 5: If *np* and *n*(1 *p*) are both ≥ 5, then convert \bar{p} to a standardized *z*-value
 - Step 6: Use the standard normal distribution table in Appendix D to determine the required probability.

Using the Sample Distribution for Proportion - Example

- Given a simple random sample:
- Step 1: Determine the population proportion
- Step 2: Calculate the sample proportion
- Step 3: Determine the mean and standard deviation of the sampling distribution $\mu_{\overline{p}} = 0.80$ $\sigma_{\overline{x}} = \sqrt{\frac{0.80(1-0.80)}{100}} = 0.04$
- Step 4: Define the event of interest
- Step 5: Convert the sample proportion to a standardized z-value
- Step 6: Use the normal distribution table to determine the probability

 $n = 100 \quad x = 73$

$$\overline{p} = \frac{73}{100} = 0.73$$

$$P(\overline{p} \leq 0.73) = ?$$

$$np = 80 \ge 5 \quad n(1-p) = 20 \ge 5$$
$$z = \frac{0.73 - 0.80}{0.04} = -1.75$$

$$P(\overline{p} \leq 0.73) = 0.0401$$