Lecture 1

Introduction to sampling distributions (distribuciones de muestreo)

7.1 Sampling Error: What It Is and Why It Happens

- The sample may not be a perfect representation of the population
- Sampling Error
- The difference between a measure computed from a sample (a statistic) and the corresponding measure computed from the population (a parameter)

$$
\text { Sampling error }=\bar{x}-\mu
$$

\bar{x} - Sample mean
μ - Population mean

Sampling Error

- Parameter
- A measure computed from the entire population. As long as the population does not change, the value of the parameter will not change. It can also be interpreted as a constant of the mathematical model used to study the population or system.
- Simple Random Sample
- A sample selected in such a manner that each possible sample of a given size has an equal chance of being selected.

Population and Sample Mean

Population Mean

$$
\mu=\frac{\sum x}{N}
$$

μ - Population mean
x - Values in the population
N - Population size

Sample Mean

$$
\bar{x}=\frac{\sum x}{n}
$$

\bar{x} - Sample mean
x - Sample values selected from the population
n - Sample size

Example: If the population mean is $\mu=98.6$ degrees and a sample of $\mathrm{n}=5$ temperatures yields a sample mean of $\bar{x}=99.2$ degrees, then the sampling error is:

$$
\bar{x}-\mu=99.2-98.6=0.6 \text { degrees }
$$

Population and Sample Mean

- The population mean previously defined can also be seen as the mean or expected value of discrete random variable.
- The sample mean previously defined is called the arithmetic mean of a finite set of numbers.

Sampling Error

- The size of the sampling error depends on which sample is selected.
- The sampling error may be positive or negative.
- There is potentially a different \bar{x} for each possible sample.
7.2 Sampling Distribution of the Mean
- Sampling Distribution
- The distribution of all possible values of a statistic for a given sample size that has been randomly selected from a population
- Excel tool can be used to build sampling distribution

Using Excel for Sampling Distribution

21年					
Fi	Home		Page Layout	Forr	
另 Cut蝟 Copy－ Paste Format Painter Clipboard			Arial $\quad-10$		
			B I I		
			Font		
L23			－－	f_{x}	
4	A	B	C	D	
2	19100	4			0
3	5034	4			1
4	29824	1			2
5	44955	0			2
6	44230	5			2
7	47923	5			2
8	725	2			1
9	20371	3			5
10	43162	4			1
11	6929	1	Mean＝	$\frac{5}{2.1}$	
12	12252	4			
13	2274	2			
14	1619	0			
15	－ 2 ¢	4			

1．Open file．
2．Select Data＞Data Analysis
3．Select Sampling
4．Define the population data range．
5．Select Random，Number of Samples： 10.
6．Select Output Range：D2．
7．Compute sample mean using Average function．

Average Value of Sample Means

- Theorem 1:
- For any population, the average value of all possible sample means computed from all possible random samples of a given size from the population will equal the population mean

$$
\mu_{\bar{x}}=\mu
$$

- Unbiased Estimator: A characteristic of certain statistics in which the average of all possible values of the sample statistic equals parameter

Standard Deviation of Sample

 Means- Theorem 2:

For any population, the standard deviation of the possible sample means computed from all possible random samples of size n is equal to the population standard deviation divided by the square root of the sample size. Also called standard error.

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Consistent Estimator

- An unbiased estimator is said to be a consistent estimator if the difference between the estimator and the parameter tends to become smaller as the sample size becomes larger.
- Recall definition of the standard deviation or variance.

z-Value for Sampling

Distribution of \bar{x}

- The relative distance that a given sample mean is from the center can be determined by standardizing the sampling distribution
- A z-value measures the number of standard deviations a value is from the mean

\bar{x} - Sample mean
μ - Population mean
σ - Population standard deviation
n - Sample size

z-Value Corrected for Finite

Population

- The sample is large relative to the size of the population (greater than 5\% of the population size), and the sampling is being done without replacement
- Use the finite population correction factor to calculate z-value

$$
z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}}
$$

N - Population size
n - Sample size
$\sqrt{\frac{N-n}{N-1}}$ - Finite population correction factor

The Central Limit Theorem

8 Population may not be normally distributed

- Theorem 4: For simple random samples of n observations taken from a population with mean μ and standard deviation σ, regardless of the population's distribution, provided the sample size is sufficiently large, the distribution of the sample means, \bar{x}, will be approximately normal with a mean equal to the population mean ($\mu_{\bar{x}}=\mu$) and a standard deviation equal to the population standard deviation divided by the square root of the sample size $\left(\sigma_{\bar{x}}=\sigma / \sqrt{n}\right)$.
- The larger the sample size, the better the approximation to the normal distribution.

The Central Limit Theorem

- Example: Uniform Population Distribution

The Central Limit Theorem

- Example: Triangular Population Distribution

The Central Limit Theorem

- Example: Skewed Population Distribution

The Central Limit Theorem

- The sample size must be "sufficiently large"
- If the population is quite symmetric, then sample sizes as small as 2 or 3 can provide a normally distributed sampling distribution
- If the population is highly skewed or otherwise irregularly shaped, the required sample size will be larger
- A conservative definition of a sufficiently large sample size is $n \geq 30$

The Central Limit Theorem

Example...

7.3 Sampling Distribution of a

 Proportion- Population Proportion
- The fraction of values in a population that have a specific attribute
- Sample Proportion
- The fraction of items in a sample that have the attribute of interest
p - Population proportion
X - Number of items in the population having the attribute of interest
N - Population size

$$
\bar{p}=\frac{x}{n}
$$

\bar{p} - Sample proportion
x - Number of items in the sample with the attribute of interest
n-Sample size

Sampling Error for a Proportion

Sampling Error $=\bar{p}-p$

p - Population proportion
\bar{p} - Sample proportion

- Step 1: Determine the population proportion
- Step 2: Compute the sample proportion
- Step 3: Compute the sampling error

Sampling Distribution of \bar{p}

- The best estimate of the population proportion will be \bar{p}, the sample proportion
- Any inference about how close your estimate is to the true population value will be based on the distribution of this sample proportion, \bar{p}, whose underlying distribution is the binomial
- If the sample size is sufficiently large such that $n p \geq 5$ and $n(1-p) \geq 5$ then the normal distribution can be used as a reasonable approximation to the discrete binomial distribution

Sampling Distribution of \bar{p}

$$
\text { Mean }=\mu_{\bar{p}}=p
$$

p - Population proportion
n - Sample size
\bar{p} - Sample proportion

Sampling Distribution of \bar{p}

- Theorem 5: Regardless of the value of the population proportion, p, (with the obvious exceptions of $p=0$ and $p=1$), the sampling distribution for the sample proportion, \bar{p}, will be approximately normally distributed with $\mu_{\bar{p}}=p$
and $\sigma_{\bar{p}}=\sqrt{\frac{p(1-p)}{n}}$ providing $n p \geq 5$ and
$n(1-p) \geq 5$. The approximation to the normal distribution improves as the sample size increases and p approaches 0.50 .

z-Value for Sampling Distribution

 of $\bar{p}$$$
z=\frac{\bar{p}-p}{\sigma_{\bar{p}}}
$$

Z - Number of standard errors \bar{p} is from p
\bar{p} - Sample proportion
$\sigma_{\bar{p}}=\sqrt{\frac{p(1-p)}{n}}$ - Standard error of the sampling distribution
p-Population proportion
If the sample size n is greater than 5\% of the population size, the standard error of the sampling distribution should be computed using the finite population correction factor

$$
\sigma_{\bar{p}}=\sqrt{\frac{p(1-p)}{n}} \sqrt{\frac{N-n}{N-1}}
$$

Using the Sample Distribution for Proportion

8 Steps to find probabilities associated with a sampling distributions for proportions:

- Step 1: Determine the population proportion
- Step 2: Calculate the sample proportion
- Step 3: Determine the mean and standard deviation of the sampling distribution
- Step 4: Define the event of interest
- Step 5: If $n p$ and $n(1-p)$ are both ≥ 5, then convert \bar{p} to a standardized z-value
- Step 6: Use the standard normal distribution table in Appendix D to determine the required probability.

Using the Sample Distribution for Proportion - Example

- Given a simple random sample:

```
n=100 x=73
```

- Step 1: Determine the population proportion
$p=0.80$
- Step 2: Calculate the sample proportion

$$
\bar{p}=\frac{73}{100}=0.73
$$

- Step 3: Determine the mean and standard deviation of the sampling distribution

$$
\mu_{\bar{p}}=0.80 \quad \sigma_{\bar{x}}=\sqrt{\frac{0.80(1-0.80}{100}}=0.04
$$

- Step 4: Define the event of interest
$P(\bar{p} \leq 0.73)=?$
- Step 5: Convert the sample proportion to a standardized z-value

$$
\begin{gathered}
n p=80 \geq 5 \quad n(1-p)=20 \geq 5 \\
z=\frac{0.73-0.80}{0.04}=-1.75
\end{gathered}
$$

- Step 6: Use the normal distribution table to determine the probability

