Lecture 3

Describing Data Using Numerical Measures

Convright ©2014 Pearson Education Inc.

3.1 Measures of Center and Location

Parameter and Statistic

Parameter

- A measure computed from the entire population
- As long as the population does not change, the value of the parameter will not change

Statistic

- A measure computed from a sample that has been selected from a population
- The value of the statistic will depend on which sample is selected.

Population Mean

- μ Population mean
- N Population size
- x_i *i*th individual value of variable x
- The average for all values in the population computed by dividing the sum of all values by the population size

Sample Mean

- \bar{x} Sample mean
- *n* Sample size
- The average for all values in the sample computed by dividing the sum of all sample values by the sample size

Median

- The median is a center value that divides a data array into two halves (*Md*)
- Data Array
 - Data that have been arranged in numerical order
- Median Index

$$i = \frac{1}{2}n$$

- i = The index of the point in the data set corresponding to the median value
- *n* = Sample size

Median

- In an ordered array (lowest to highest), the median is the "middle" number, i.e., the number that splits the distribution in half numerically
 - 50% of the data is above the median, 50% is below
 - Represented as Md
- The median is <u>not</u> affected by extreme values

Computing the Median

- Step 1: Collect the sample data
- Step 2: Sort data from smallest to largest
- Step 3: Calculate the median index
 - If *i* is not an integer, round up to next highest integer
 - If *i* is an integer, the median is the average of the values in position \underline{i} and i + 1
- Step 4: Find the median

Median Example

Data array: 4 4 5 5 9 11 12 14 16 19 22 23 24

Note that n = 13

Find the median index i = (1/2)(13) = 6.5

Since 6.5 is not an integer, round up to 7

The median is the value in the 7th position: $M_d = 12$

Skewed and Symmetric Distributions

- Symmetric Data
 - Data sets whose values are evenly spread around the center.
- Skewed Data
 - Data sets that are not symmetric

Mode

- The value in a data set that occurs most frequently
- Is not affected by extreme values
- Can be used for both quantitative and qualitative data
- Can have more than one mode, or no mode
- Distribution with two modes bimodal

- Mean is generally used, unless extreme values (outliers) exist
- Then Median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers
- Mode is good for determining more likely to occur

Weighted Mean

• The mean value of data values that have been weighted according to their relative importance

Weighted Mean for a PopulationWeighted Mean for a Sample $\mu_W = \frac{\sum w_i x_i}{\sum w_i}$ $\bar{x}_w = \frac{\sum w_i x_i}{\sum w_i}$

- w_i The weight of the i^{th} data value
- x_i The *i*th data value

Calculating Weighted Mean

- Step 1: Collect the desired data and determine the weight to be assigned to each data value
- Step 2: Multiply each weight by the data value and sum these
- Step 3: Sum weights for all values
- Step 4: Compute the weighted mean

Percentiles and Quartiles

Percentiles

The *p*th percentile in a data array:

- p% are less than or equal to this value
- (100 p)% are greater than or equal to this value

(where $0 \le p \le 100$)

• 50th percentile is the median

Quartiles

1st quartile = 25th percentile

2nd quartile = 50th percentile Also the median

3rd quartile = 75th percentile

Calculating Percentiles

- Step 1: Sort the data in order from the lowest to highest value.
- Step 2: Determine the percentile location index:

$$i=\frac{p}{100}(n)$$

 Step 3: If *i* is not an integer, then round to next highest integer. The *p*th percentile is located at the rounded index position. If *i* is an integer, the *p*th percentile is the average of the values at location index positions *i* and *i* + 1.

Percentile Example

chapter 3

 Find the 60th percentile in an ordered array of 19 values

36 40 42 46 51 56 62 65 71 74 78 82 84 87 88 90 92 95 97

Percentile location index:

$$i = \frac{p}{100}(n) = \frac{60}{100}(19) = 11.4$$

Use value at 12th position

• 60th percentile equals 82

Quartile Example

chapter 3

 Find the 1st quartile in an ordered array of 19 values

36 40 42 46 51 56 62 65 71 74 78 82 84 87 88 90 92 95 97

Quartile location index:

$$i = \frac{q}{100}(n) = \frac{25}{100}(19) = 4.75$$
 Use value at 5th position

1st quartile Q₁ equals 51

Box and Whisker Plot

- A graph that is composed of two parts: a box and the whiskers
- The box has a width that ranges from the first quartile (Q1) to the third quartile (Q3)
- A vertical line through the box is placed at the median.
- Limits are located at a value that is 1.5 multiplied by the difference between Q1 and Q3 below Q1 and above Q3.
- The whiskers extend to the left to the lowest value within the limits and to the right to the highest value within the limits.

Constructing a Box and Whisker Plot

- Step 1: Sort values from lowest to highest
- Step 2: Find *Q*₁, *Q*₂, *Q*₃
- Step 3: Draw the box so that the ends are at Q_1 and Q_3
- Step 4: Draw a vertical line through the median
- Step 5: Calculate the interquartile range $(IQR = Q_3 Q_1)$
- Step 6: Extend dashed lines from each end to the highest and lowest values within the limits
- Step 7: Identify outliers with an asterisk (*)

Constructing a Box and Whisker Plot

- The center box extends from Q_1 to Q_3
- The line within the box is the median
- The whiskers extend to the smallest and largest values within the calculated limits
- Outliers are plotted outside the calculated limits

chapter 3

Box and Whisker Plot Example

Below is a Box-and-Whisker plot for the following data: Min Max Q_1 Q_2 Q_3 (3) 2 4 2 3 5 6 11 * 6 12 27 Ω 3 27 is above the Upper limit = $Q_3 + 1.5 (Q_3 - Q_1)$ upper limit so is = 6 + 1.5 (6 - 2) = 12shown as an outlier

• This data is right skewed, as the plot depicts

Descriptive Measures of the Center

Descriptive Measure	Computation Method	Data Level	Advantages/ Disadvantages
Mean	Sum of values divided by the number of values	Ratio Interval	 Numerical center of the data Sum of deviations from the mean is zero Sensitive to extreme values
Median	Middle value for data that have been sorted	Ratio Interval Ordinal	 Not sensitive to extreme values Computed only from the center values Does not use information from all the data
Mode	Value(s) that occur most frequently in the data	Ratio Interval Ordinal Nominal	May not reflect the centerMay not existMight have multiple modes

3.2 Measures of Variation

Convright @2014 Pearson Education Inc.

Variation

- A set of data exhibits variation if all the data are not the same value
- Measures of variation give information on the spread or variability
 - Smaller value less variation
 - Larger value more variation

Range

 A measure of variation that is computed by finding the difference between the maximum and minimum values in a data

set

R = Maximum Value – Minimum Value

- Simplest measure of variation
- Is very sensitive to extreme values
- Ignores the data distribution

Interquartile Range

- A measure of variation that is determined by computing the difference between the third and first quartiles
- Eliminates outlier problems
- Eliminates some high- and low-valued observations

Interquartile Range =
$$Q_3 - Q_1$$

Interquartile Range Example

Population Variance

• The average of the squared distances of the data values from the mean.

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$$

 μ - population mean, N – population size

• Shortcut formula:

$$\sigma^2 = \frac{\sum x^2 - \frac{\left(\sum x\right)^2}{N}}{N}$$

Convright ©2014 Pearson Education Inc.

Population Standard Deviation

- The most commonly used measure of variation
- The positive square root of the variance

$$\boldsymbol{\sigma} = \sqrt{\boldsymbol{\sigma}^2} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \boldsymbol{\mu})^2}{N}}$$

Has the same units as the original data

Sample Variance and Standard Deviation

- Sample data have been selected from the population
- Sample Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Sample Standard
 Deviation

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}}$$

Computing Sample Variance and Standard Deviation

- Step 1: Select the sample and record the data for the variable of interest
- Step 2: Select expression for sample variance
- Step 3: Compute \overline{x}
- Step 4: Determine the sum of the squared deviations of each x value from \overline{x}
- Step 5: Compute the sample variance
- Step 6: Compute the sample standard deviation by taking the square root of the variance

Standard Deviation Calculation Example

Sample Data (x_i) 4 7 1 0 5 0 3 2 6 2

n = 10 $\overline{x} = 3$

$$S = \sqrt{\frac{(4-\bar{x})^2 + (7-\bar{x})^2 + (1-\bar{x})^2 + (0-\bar{x})^2 + \dots + (6-\bar{x})^2 + (2-\bar{x})^2}{10-1}} =$$

$$= \sqrt{\frac{(4-3)^2 + (7-3)^2 + (1-3)^2 + (0-3)^2 + \dots + (6-3)^2 + (2-3)^2}{10-1}} =$$

$$=\sqrt{\frac{54}{9}}=2.449$$

Convright @2014 Pearson Education Inc

Comparing Standard Deviations

Same mean, but different standard deviations:

3.3 Using the Mean and Standard Deviation Together

- Coefficient of Variation (CV)
 - The ratio of the standard deviation to the mean expressed as a percentage. The coefficient of variation is used to measure variation relative to the mean
 - Measures relative variation
 - Always expressed in percentage (%)
 - Shows variation relative to mean

Coefficient of Variation

- Is used to compare two or more sets of data measured in different units
- Population CV

$$CV = \frac{\sigma}{\mu} (100)\%$$

• Sample CV

$$CV = \frac{s}{\overline{x}}(100)\%$$

Convright ©2014 Pearson Education Inc.

Comparing Coefficients of Variation

Stock A:

- Average price last year = \$50
- Standard deviation = \$5

$$CV_{\rm A} = \left(\frac{s}{\bar{x}}\right) * 100\% = \frac{\$5}{\$50} * 100\% = 10\%$$

- Stock B:
 - Average price last year = \$100
 - Standard deviation = \$5

$$CV_{\rm A} = \left(\frac{s}{\bar{x}}\right) * 100\% = \frac{\$5}{\$100} * 100\% = 5\%$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

The Empirical Rule

- If the data distribution is bell shaped, then the interval
 - $-\mu \pm 1\sigma$ contains approximately 68% of the values
 - $-\mu \pm 2\sigma$ contains approximately 95% of the values
 - $-\mu \pm 3\sigma$ contains virtually all of the data values

The Empirical Rule

Convright ©2014 Pearson Education Inc.

Tchebysheff's Theorem

- Regardless of how data are distributed, at least (1 - 1/k²) of the values will fall within k standard deviations of the mean
- Examples:

Standardized Data Values

- The number of standard deviations a value is from the mean
- Standardized data values are also referred to as z score
 - Population z score

– Sample z score

 $z = \frac{x - \mu}{\sigma}$

S

- x data value
- μ population mean
- σ population standard deviation
- \overline{x} sample mean
- s sample standard deviation

Converting Data to Standardized Values

- Step 1: Collect the population or sample values for the quantitative variable of interest.
- Step 2: Compute the population mean and standard deviation or the sample mean and standard deviation.
- Step 3: Convert the values to standardized *z*-values

Standardized Value Calculation Example

- IQ scores in a large population have a bell-shaped distribution with mean $\mu = 100$ and standard deviation $\sigma = 15$
- Find the standardized score (z-score) for a person with an IQ of 121.

$$z = \frac{x - \mu}{\sigma} = \frac{121 - 100}{15} = 1.4$$

Someone with an IQ of 121 is 1.4 standard deviations above the mean

How to Do It in Excel?

How to Do It in Excel?

Enter dialog box	A 1 House Prices 2 2000000	B C D E F G H Descriptive Statistics
	1 300000	Input Range: \$A\$1:\$A\$6
	5 100000	Grouped By:
	6 100000	
	7	Labels in First Row
Check box for	9	Output options
	10	O Output Range:
summary statistics	12	New Worksheet Ply:
	13	New Workbook
	14	Summary statistics
Click OK	15	Confidence Level for Mean: 95 %
	17	Kth Largest:
	18	Kth Smallest:
	19	
	20	

chapter **3**

Descriptive Statistics Output

• Excel Output

	A	В	
1	House Pr		
2			Mean
3	Mean	600000	
4	Standard Error	357770.8764	Median
5	Median	300000	2-
6	Mode	100000	< Mode
7	Standard Deviation	800000	F
8	Sample Variance	6.4E+11	rs Standard
9	Kurtosis	4.130126953	Deviation
10	Skewness	2.006835938	
11	Range	1900000	Variance
12	Minimum	100000	Range
13	Maximum	2000000	range
14	Sum	3000000	
15	Count	5	
16			
4.7			

Convright ©2014 Pearson Education Inc.