Lecture 2

Describing the data graphically:
Frequency distributions, histograms, and
other types of graphs.
2.1 Frequency Distributions and Histograms

- Frequency Distribution
- A summary of a set of data that displays the number of observations in each of the distribution's distinct categories or classes
- Is a list or a table
- Contains the values of a variable (or a set of ranges within which the data fall)
- Also contains the corresponding frequencies with which each value occurs (or frequencies with which data fall within each range)

Discrete Data

- Data that can take on a countable number of possible values
- Example: An advertiser asks 200 customers how many days per week they read the daily newspaper

Number of days read	Frequency
0	44
1	24
2	18
3	16
4	20
5	22
6	26
7	30
Total	$\mathbf{2 0 0}$

Relative Frequency

- The proportion of total observations that are in a given category.

$$
\text { Relative frequency }=\frac{f_{i}}{n}
$$

f_{i} - Frequency of the $\mathrm{i}^{\text {th }}$ value of the discrete variable
$n=\sum_{i=1}^{k} f_{i}$ - Total number of observations
k - The number of different values for the discrete variable

Example

Number of days read	Frequency	Relative Frequency
0	44	.22
1	24	.12
2	18	.09
3	16	.08
4	20	.10
5	22	.11
6	26	.13
7	30	.15
Total	200	1.00

$\frac{44}{200}=.22$

22% of the people in the sample report that they read the newspaper 0 days per week

Developing Frequency Distribution for Discrete Data

- Step 1: List the possible values
- Step 2: Count the number of occurrences at each value
- Step 3: Determine the relative frequencies

Transactions	Frequency	Relative Frequency
0	5	$5 / 16=.3125$
1	4	$4 / 16=.2500$
2	5	$5 / 16=.3125$
3	1	$1 / 16=.0625$
4	1	$1 / 16=\underline{.0625}$
	Total $=16$	

How to Do It in Excel?

1. Open File.
2. Enter the Possible Values for the Variable; i.e., 0, 1, 2, 3, 4, etc.
3. Select the cells to contain the Frequency values.
4. Select the Formulas tab.
5. Click on the f_{x} button.
6. Select the StatisticsFREQUENCY function.
7. Enter the range of data and the bin range (the number of shoes).
8. Press Ctrl-Shift-Enter to determine the frequency values.

Grouped Data

- Continuous data
- data whose possible values are uncountable and that may assume any value in an interval (weight, length, time)
- Discrete data with many possible outcomes (age, income, stock price)
- Summarized in a grouped data frequency distribution
- Data are organized in classes

Criteria for Building Classes

- Classes must be mutually exclusive
- classes do not overlap
- Classes must be all-inclusive
- a set of classes contains all possible data values
- Classes should be of equal width, if possible
- the distance between the lowest and the highest possible values in each class is equal for all classes.
- Empty classes should be avoided

Developing Frequency Distribution for Continuous Data

- Step 1: Determine the number of classes
- Step 2: Establish the class width
- Step 3: Determine the class boundaries for each class
- the upper and lower values of each class
- Step 4: Determine the class frequency for each class
- number of data points in each class

How Many Classes?

- Many (Narrow class intervals)
- May yield a very jagged distribution with gaps from empty classes
- Can give a poor indication of how frequency varies across classes
- Few (Wide class intervals)
- May compress variation too much and yield a blocky distribution
- Can obscure important patterns of variation

How Many Classes?

- Rule of thumb: between 5 and 20 classes
- $2^{k} \geq n$ rule,
- where k is the number of classes and is defined to be the smallest integer so that $2^{k} \geq n$, where n is the number of data values
- The minimum class width:

$$
W=\frac{\text { Largest value }- \text { Smallest value }}{\text { Number of classes }}
$$

Example

- Sort raw data from low to high:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

- Find range: 58-12=46
- Select number of classes: 5 (usually between 5 and 20)
- Compute class width: 10 ($46 / 5$ then round off)
- Determine class boundaries: $10,20,30,40,50$ (Sometimes class midpoints are reported: 15, 25, 35, 45, 55)
- Count the number of values in each class

Example (continue)

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Frequency Distribution

Class	Frequency	Relative Frequency
10 but under 20	3	.15
20 but under 30	6	.30
30 but under 40	5	.25
40 but under 50	4	.20
50 but under 60	2	.10
Total	20	1.00

More on Frequency Distributions

- Cumulative Frequency Distribution
- a summary of a set of data that displays the number of observations with values less than or equal to the upper limit of each of its classes
- Cumulative Relative Frequency Distribution
- A summary of a set of data that displays the proportion of observations with values less than or equal to the upper limit of each of its classes

Example

DVD Movies	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
$0-3$	60	0.261	60	0.261
$4-7$	50	0.217	110	0.478
$8-11$	47	0.204	157	0.683
$12-15$	40	0.174	197	0.857
$16-19$	18	0.078	215	0.935
$20-23$	8	0.035	223	0.970
$24-27$	6	0.026	229	0.996
$28-31$	1	0.004	230	1.000
	Total $=\overline{230}$			

Frequency Histograms

- A graph of a frequency distribution with the horizontal axis showing the classes, the vertical axis showing the frequency count, and (for equal class widths) the rectangles having a height equal to the frequency in each class.

Constructing Frequency

Histograms

- Steps 1-4: Construct a frequency distribution
- Step 5: Construct the axes for the histogram
- Step 6: Construct bars with heights corresponding to the frequency of each class
- Step 6: Label the histogram appropriately

How to Do It in Excel?

1. Open file.
2. Set up an area on the worksheet for the bins.
3. On the Data tab, click Data Analysis.
4. Select Histogram.
5. Input Range specifies the actual data values and the bin range as the area defined in 2.
6. Put on a new worksheet ply and include the Chart Output.
7. Right mouse click on the bars and use the Format Data Series Options to set gap width to zero and add lines to the bars.
8. Convert the bins to actual
 class labels by typing labels in Column A.
Note: The bin 239.99 is labeled < 239.99.

Relative Frequency Histogram and

 Ogive- Step 1: Convert the frequency distribution into relative frequencies and cumulative relative frequencies
- Step 2: Construct the relative frequency histogram
- Place the quantitative variable on the horizontal axis and the relative frequencies on the vertical axis. The vertical bars are drawn to heights corresponding to the relative frequencies of the classes.

Relative Frequency Histogram and

 Ogive- Step 3: Construct the ogive
- Ogive
- The graphical representation of the cumulative relative frequency. A line is connected to points plotted above the upper limit of each class at a height corresponding to the cumulative relative frequency.

Example

Response Time	Frequency	Relative Frequency	Cumulative Relative Frequency
0 and under 30	36	$36 / 1220=0.0295$	0.0295
30 and under 60	68	$68 / 1220=0.0557$	0.0852
60 and under 90	195	$195 / 1220=0.1598$	0.2451
90 and under 120	180	$180 / 1220=0.1475$	0.3926
120 and under 150	260	$260 / 1220=0.2131$	0.6057
150 and under 180	182	$182 / 1220=0.1492$	0.7549
180 and under 210	145	$145 / 1220=0.1189$	0.8738
210 and under 240	80	$80 / 1220=0.0656$	0.9393
240 and under 270	43	$43 / 1220=0.0352$	0.9746
270 and under 300	31	$\underline{31 / 1220=0.0254}$	1.0000
1,220			

Joint Frequency Distribution

- Data are characterized by more than one variable
- Can be constructed for qualitative and quantitative variables
- Step 1: Obtain the data
- Example:

Joint Frequency Distribution

- Step 2: Construct the rows and columns of the joint frequency table
- Step 3: Count the number of joint occurrences at each row level and each column level for all combinations of row and column values and place these frequencies in the appropriate cells
- Step 4: Calculate the row and column totals

Cross-tabulation Table Example

2.2 Bar Charts, Pie Charts, and Stem and Leaf Diagrams

Bar Charts

- A graphical representation of a categorical data set in which a rectangle or bar is drawn over each category or class
- The length or height of each bar represents the frequency or percentage of observations or some other measure associated with the category
- The bars may be vertical or horizontal

Bar Chart Example

Car Company	January 2012 Sales
General Motors	167,900
Ford	136,300
Chrysler	101,150
Toyota	125,500
Honda	83,000
Nissan	79,300
Hyundai	42,700
Mazda	24,000

Constructing Bar Chart

- Step 1: Define the categories for the variable of interest
- Step 2: For each category, determine the appropriate measure or value
- Step 3: For a column bar chart, locate the categories on the horizontal axis. For a horizontal bar chart, place the categories on the vertical axis. Then construct bars, either vertical or horizontal, for each category such that the length or height corresponds to the value for the category.
- Step 4: Interpret the results

Pie Charts

- A graph in the shape of a circle.
- The circle is divided into "slices" corresponding to the categories or classes to be displayed.
- The size of each slice is proportional to the magnitude of the displayed variable associated with each category or class.

Pie Chart Example

Equipment	Frequency
Golf ball	81
Club head material	66
Shaft material	63
Club head size	63
Shaft length	3
Don't know	24

Constructing Pie Chart

- Step 1: Define the categories for the variable of interest.
- Step 2: For each category, determine the appropriate measure or value. The value assigned to each category is the proportion the category is to the total for all categories.
- Step 3: Construct the pie chart by displaying one slice for each category that is proportional in size to the proportion the category value is to the total of all categories.

Constructing Stem and Leaf Diagram

- Step 1: Sort the data from low to high.
- Step 2: Analyze the data for the variable of interest to determine how you wish to split the values into a stem and a leaf.
- Step 3: List all possible stems in a single column between the lowest and highest values in the data.
- Step 4: For each stem, list all leaves associated with the stem.

Stem and Leaf Diagram Example

```
Scores: 81 86 78 80 81 82 92 90
    79 83 84 95 85 88 80 78
    84 79 80 83 79 87 84 80
```



```
7 8 88999
0000112334445678
0}
```

Step 1: The lowest value is 78 , the highest - 95
Step 2: Stem is tens place, leaf is unit place
Step 3: List possible stems: 7, 8, and 9
Step 4: Itemize the leaves from lowest to highest and place next to the appropriate stem
2.3 Line Charts and Scatter Diagrams

- Line Chart
- A two-dimensional chart showing time on the horizontal axis and the variable of interest on the vertical axis
- Scatter Diagram
- A two-dimensional graph of plotted points in which the vertical axis represents values of one quantitative variable and the horizontal axis represents values of the other quantitative variable

Line Chart Example

2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
1,426	1,678	2,591	2,105	2,744	3,068	2,755	3,689	4,003	3,997

Constructing Line Charts

- Step 1: Identify the time-series variable of interest and determine the maximum value and the range of time periods covered in the data
- Step 2: Construct the horizontal axis for the time periods. Construct the vertical axis with a scale appropriate for the range of values
- Step 3: Plot the points of the graph and connect them with straight lines

Scatter Diagram

- Also called the scatter plot
- Shows the relationship between two quantitative variables
- Dependent Variable
- Values are thought to be a function of another variable
- Independent Variable
- Values are thought to impact the values of the dependent variable

Scatter Diagram Example

Volume per day	Cost per day
23	125
26	140
29	146
33	160
38	167
42	170
50	188
55	195
60	200

Constructing Scatter Diagram

- Step 1: Identify the two quantitative variables and collect paired responses for the two variables.
- Step 2: Determine which variable will be placed on the vertical axis (y) and which variable will be placed on the horizontal axis (x)
- Step 3: Define the range of values for each variable and define the appropriate scale for the x and y axes
- Step 4: Plot the joint values for the two variables by placing a point in the x, y space

