
Software and OS

Software and Operating systems (OS)

Aniel Nieves-González

Fall 2015



Software and OS

Hardware and software I

Hardware is the set of physical components or devices that
constitute a computer.

Software are the computer programs that are the
embodiment of some computer algorithms (hence they
perform certain task.
Broadly, in the software category we have:

Operating systems (OSs).
Applications.
Firmware (control programs stored in chips).



Software and OS

Operating systems I

An operating system (OS) is software that serves as an
intermediary between the different hardware components of
a computer and the users and applications (other software)
of a computer.

The main function of an OS is to manage the different
resources provided by hardware and efficiently allocating
such resources so that they can be used by users and
applications.

An OS is composed of a kernel and several other programs.
The kernel is the part of the OS that is always running.
The other programs support functions like file
management, device control, etc.



Software and OS

Operating systems II

Modern OS support interaction with the user via a
graphical user interface (GUI) and via text interface
(command line).

OS give programmers function and tools that facilitate the
development of applications.
OS can be of different types.

Single-tasking: Only one program can be run at a time.
Multi-tasking: More than one program can be run at a time.
This is achived by time-sharing, the available processor time
is divided among the different running program (processes).
Single-user: There is no way to distinguish between
different users.
Multi-user: This extends the concept of multi-tasking to
distinguish between different users.



Software and OS

Operating systems III

Distributed: It manages a set of computers and allow them
to work as a single entity.
Embedded: An OS designed to work on computer dedicated
to a specific purpose (not general purpose computers).
Real-time: In this case the OS guarantees that certain
events or data are going to be process in certain (short)
amount of time.



Software and OS

Applications: I

The applications consists in the computer programs that the
users are interested in running because it solves their specific
problems. Relevant to business administration we have:

Desktop software.
Enterprise software:

Enterprise Resourse Planning (ERP) system with multiple
modules installed can touch many functions of the business
such as sales, inventory, manufacturing, human resources,
purchasing, order tracking, and decision support.
Customer relationship management (CRM) systems
support customer-related sales and marketing activities.
Supply chain management (SCM) systems can help a firm
manage aspects of its value chain.



Software and OS

Applications: II

Business intelligence (BI) systems use data created by other
systems to provide reporting and analysis for organizational
decision making.
Database management system (DBMS). Strictly speaking is
more general than enterprise software. But is important in
the context of an enterprise.



Software and OS

Discussion:
What are the advantages and disadvantages of packaged
Enterprise systems?

For what it matters: What are the advantages and
disadvantages of any packaged software?



Software and OS

Discussion:
What are the advantages and disadvantages of packaged
Enterprise systems?
For what it matters: What are the advantages and
disadvantages of any packaged software?



Software and OS

Distributed computing

Distributed computing refers whenever there is a cluster of
computers (MIMD cluster) that is spread over different
locations and is used as a single computing entity to solve a
problem.



Software and OS

Server-client model.

A server is either hardware of software that serves requests
from clients.
In terms of harware the clients can be users or another
computers.
In terms of software the clients are another programs. For
instance: web server telnet, ssh, etc.

We’ll see a practical example. . .



Software and OS

Writing software: Programming I

A a programming language is a formal language design to
communicate instructions to a computer. Programming
languages are used to write programs, which express
(implement) algorithms.

1 A high-level language provides strong abstraction from the
details of a computing system. For example: FORTRAN,
Cobol, C, Java, SQL, MATLAB, R, etc.

2 A low-level language provides little abstraction from the
inner workings of a computer system. For example: Any
assembly language.



Software and OS

Writing software: Programming II

Ultimately, any programming language is translated into
machine language (machine instructions), which are in binary
form. Loosely speaking that translation process is called
compilation or interpretation. The difference between
compilation and interpretation is important.

Compilation is a multi-step procedure in which the input is
the source code (i.e., an algorithm written in a
programming language) and the output is the program in
machine readable format (binary or assembly).
Steps in the compilation process include:

Syntax verification.
Code optimization.
Assembly language generation



Software and OS

Writing software: Programming III

Informally, the work performed by the assembler (translate
from assembly language to machine code) and the linker
(link the source code to other code) is included in the
compilation process.

Examples of compiled languages are: FORTRAN, C, and
the descendants of C.

For an interpreted programming language the source code
is translated into a low-level language called bytecode at
run time. The bytecode is generated and executed by
another piece of software called the interpreter.

Examples of interpreted languages are: Java, R, and
MATLAB.



Software and OS

Writing software: Programming IV

In the case of Java, a source code written in Java is
translated into bytecode which is interpreted by the Java
Virtual Machine (JVM).



Software and OS

Writing software: Compilation vs. interpretation I

Compilation produces an output that is generally faster (in
terms of run time) than interpreted code. The reason is
that in this case the interpreter is removed from the
equation.

Interpretation produces code that is highly portable in
comparison with compiled code. Recall, that in contrast, to
port the source code of a compiled language to another
machine you have to compile the code again.



Software and OS

Writing software I

Source code is written using an application called text
editor.

Text editors are not the same as word processing software.
Text editors produce plain text files, word processors add
special characters to produced a formatted and stylistic
output.

Operating systems always include a text editor.

Besides being used to write source code, text editors are
used to edit OS configuration files.

In MS Windows the default text editor is notepad. In the
UNIX/Linux world the main text editors are vim, emacs,
etc.



Software and OS

Writing software II

To develop software the applications used are text editor,
compiler/interpreter, debugger for detecting error, etc.
Some professional programmers use an integrated
development environment (IDE) to write their code.

The IDE includes a text editor, a debugger, and other
useful programming tools.
The IDE will also compile a programmers code.



Software and OS

Discussion I

Why do some technology projects fail?

Unclear goals.

Weak commitment.

Inaccurate estimates of the resourses needed.

Poor communication.

Poor management.

etc.


