
Introduction and History

Introduction to Algorithms

Aniel Nieves-González

Institute of Statistics

Spring 2014



Introduction and History

“. . .algorithms are concepts that have existence apart
from any programming language.”

—Donald Knuth



Introduction and History

What is an algorithm?

The concept of algorithm is very old. For example: think
about Euclid’s algorithm to find the greatest common
divisor (first described c. 300 BCE).

The word algorithm comes from the last name of
Muhammad ibn Musa Al-Khowarizmi (780-850 CE). He
was a Persian mathematician .
Informally: An algorithm is a sequence of steps to solve a
problem in a finite number of steps.
More formally: An algorithm is a well-ordered collection of
unambiguous and effectively computable operations that,
when executed, produces a result and halts in a finite
amount of time.



Introduction and History

What is an algorithm?

The concept of algorithm is very old. For example: think
about Euclid’s algorithm to find the greatest common
divisor (first described c. 300 BCE).
The word algorithm comes from the last name of
Muhammad ibn Musa Al-Khowarizmi (780-850 CE). He
was a Persian mathematician .

Informally: An algorithm is a sequence of steps to solve a
problem in a finite number of steps.
More formally: An algorithm is a well-ordered collection of
unambiguous and effectively computable operations that,
when executed, produces a result and halts in a finite
amount of time.



Introduction and History

What is an algorithm?

The concept of algorithm is very old. For example: think
about Euclid’s algorithm to find the greatest common
divisor (first described c. 300 BCE).
The word algorithm comes from the last name of
Muhammad ibn Musa Al-Khowarizmi (780-850 CE). He
was a Persian mathematician .
Informally: An algorithm is a sequence of steps to solve a
problem in a finite number of steps.

More formally: An algorithm is a well-ordered collection of
unambiguous and effectively computable operations that,
when executed, produces a result and halts in a finite
amount of time.



Introduction and History

What is an algorithm?

The concept of algorithm is very old. For example: think
about Euclid’s algorithm to find the greatest common
divisor (first described c. 300 BCE).
The word algorithm comes from the last name of
Muhammad ibn Musa Al-Khowarizmi (780-850 CE). He
was a Persian mathematician .
Informally: An algorithm is a sequence of steps to solve a
problem in a finite number of steps.
More formally: An algorithm is a well-ordered collection of
unambiguous and effectively computable operations that,
when executed, produces a result and halts in a finite
amount of time.



Introduction and History

Let’s take this definition apart:
Well-ordered collection: it means that the computing agent
know which operation goes first.

Unambiguous: means that the operation can be
understood and carried out by the computing agent
without any further explanation.
Effectively computable (doable): means that there is a
computational process that allows the computing agent to
compute the operation.
Halts in a finite amount of time: It must terminate (no
infinite loop).

.



Introduction and History

Let’s take this definition apart:
Well-ordered collection: it means that the computing agent
know which operation goes first.
Unambiguous: means that the operation can be
understood and carried out by the computing agent
without any further explanation.

Effectively computable (doable): means that there is a
computational process that allows the computing agent to
compute the operation.
Halts in a finite amount of time: It must terminate (no
infinite loop).

.



Introduction and History

Let’s take this definition apart:
Well-ordered collection: it means that the computing agent
know which operation goes first.
Unambiguous: means that the operation can be
understood and carried out by the computing agent
without any further explanation.
Effectively computable (doable): means that there is a
computational process that allows the computing agent to
compute the operation.

Halts in a finite amount of time: It must terminate (no
infinite loop).

.



Introduction and History

Let’s take this definition apart:
Well-ordered collection: it means that the computing agent
know which operation goes first.
Unambiguous: means that the operation can be
understood and carried out by the computing agent
without any further explanation.
Effectively computable (doable): means that there is a
computational process that allows the computing agent to
compute the operation.
Halts in a finite amount of time: It must terminate (no
infinite loop).

.



Introduction and History

Let’s take this definition apart:
Well-ordered collection: it means that the computing agent
know which operation goes first.
Unambiguous: means that the operation can be
understood and carried out by the computing agent
without any further explanation.
Effectively computable (doable): means that there is a
computational process that allows the computing agent to
compute the operation.
Halts in a finite amount of time: It must terminate (no
infinite loop).

A procedure that possibly lacks finiteness may be called
computational method.



Introduction and History

A more rigorous definition of algorithm

Definition (Computational method)

A computational method is a quadruple (Q, I,Ω, f) in which Q
is a set that contains I and Ω. f is a function from Q into itself.
Furthermore f(q) = q,∀q ∈ Ω. The 4 quantities Q, I, Ω, and f
are intended to represent respectively the states of
computation, the input, the output and the computational rule.

For each input x ∈ I the set I defines a computational sequence,
x0, x1, x2, . . ., as follows:

x0 = x and xk+1 = f(xk) for k ≥ 0

The computational sequence is said to terminate in k steps if k
is the smallest integer for which xk ∈ Ω and in this case it is
said to produce the output xk from x.



Introduction and History

A more rigorous definition of algorithm

Observe that some computational sequences may never
terminate.

Definition (Algorithm)

An algorithm is a computational method that terminates in
finitely many steps for all x ∈ I.



Introduction and History

A more rigorous definition of algorithm

An equivalent way to formulate the concept of computational
method (algorithm) is using Turing machines.

At the early part of the XX century David Hilbert (a
german mathematician) formulated the problem sometimes
known as the “decision problem” (entscheidungsproblem).
Hilbert asked whether or not there existed some algorithm
that in principle could be used to solve certain type of
problems in mathematics.

Hilbert expected a yes as an answer to his question, albeit
years later (in the 1930’s) the answer turn out to be no.
In order to attack Hilbert’s problem Alonzo Church and
Alan Turing have to formulate a precise definition of the
concept of algorithm.
This laid the foundations of the modern theory of
algorithms and computer science.



Introduction and History

A more rigorous definition of algorithm

An equivalent way to formulate the concept of computational
method (algorithm) is using Turing machines.

At the early part of the XX century David Hilbert (a
german mathematician) formulated the problem sometimes
known as the “decision problem” (entscheidungsproblem).
Hilbert asked whether or not there existed some algorithm
that in principle could be used to solve certain type of
problems in mathematics.
Hilbert expected a yes as an answer to his question, albeit
years later (in the 1930’s) the answer turn out to be no.

In order to attack Hilbert’s problem Alonzo Church and
Alan Turing have to formulate a precise definition of the
concept of algorithm.
This laid the foundations of the modern theory of
algorithms and computer science.



Introduction and History

A more rigorous definition of algorithm

An equivalent way to formulate the concept of computational
method (algorithm) is using Turing machines.

At the early part of the XX century David Hilbert (a
german mathematician) formulated the problem sometimes
known as the “decision problem” (entscheidungsproblem).
Hilbert asked whether or not there existed some algorithm
that in principle could be used to solve certain type of
problems in mathematics.
Hilbert expected a yes as an answer to his question, albeit
years later (in the 1930’s) the answer turn out to be no.
In order to attack Hilbert’s problem Alonzo Church and
Alan Turing have to formulate a precise definition of the
concept of algorithm.

This laid the foundations of the modern theory of
algorithms and computer science.



Introduction and History

A more rigorous definition of algorithm

An equivalent way to formulate the concept of computational
method (algorithm) is using Turing machines.

At the early part of the XX century David Hilbert (a
german mathematician) formulated the problem sometimes
known as the “decision problem” (entscheidungsproblem).
Hilbert asked whether or not there existed some algorithm
that in principle could be used to solve certain type of
problems in mathematics.
Hilbert expected a yes as an answer to his question, albeit
years later (in the 1930’s) the answer turn out to be no.
In order to attack Hilbert’s problem Alonzo Church and
Alan Turing have to formulate a precise definition of the
concept of algorithm.
This laid the foundations of the modern theory of
algorithms and computer science.



Introduction and History

A more rigorous definition of algorithm: Turing machine

A Turing machine consists of two major elements: a tape and a
control unit.

1 The tape is a sequence of cells that extends to infinity in
both directions. Each cell contains a symbol from a finite
alphabet. There is a tape head that reads and writes to the
same cell.

2 The control unit contains a finite set of states and a finite
set instructions The instructions can be represented as a
5-tuple. For example, the instruction (i, a, b, L, j) is
executed as follows:
If the current state of the machine is i and if the current
symbol in the current tape cell is a, then write b in the
current tape cell, move left (L) one cell, and go to state j.



Introduction and History

A Turing machine can be illustrated as:

Image from: http://web.mit.edu/manoli/turing/www/turing.gif



Introduction and History

Church-Turing thesis

What does it mean that a certain problem is computable?

Theorem (Church-Turing thesis)

Anything that is intuitively computable can be computed by a
Turing machine.



Introduction and History

A brief remark about computer science.

Computer science can be thought as the dicipline that
studies algorithms, including:

1 Their formal mathematical properties. (Determine
correctness and efficiency).

2 Their hardware realizations. (Design machines able to
execute algorithms).

3 Their linguistic realizations. (Design programming
languages)

4 Their applications. (Identify important problems and
design correct and efficient algorithms).



Introduction and History

A brief remark about computer science.

Computer science can be thought as the dicipline that
studies algorithms, including:

1 Their formal mathematical properties. (Determine
correctness and efficiency).

2 Their hardware realizations. (Design machines able to
execute algorithms).

3 Their linguistic realizations. (Design programming
languages)

4 Their applications. (Identify important problems and
design correct and efficient algorithms).



Introduction and History

Examples of algorithms

A cooking recipe: check www.epicurious.com
Calculate the area of a circle of radius r:

Algorithm

1 Input: r
2 set variable area to π∗r2 where π∗ is an approximation of π.
3 Output: area



Introduction and History

Examples of algorithms

A cooking recipe: check www.epicurious.com
Calculate the area of a circle of radius r:

Algorithm

1 Input: r
2 set variable area to π∗r2 where π∗ is an approximation of π.
3 Output: area



Introduction and History

Examples of algorithms

Add the first n natural numbers: (i.e., compute,
∑n

i=1 i)

Algorithm

1 Input: n
2 Set accum to 0 and i to 1
3 while i ≤ n

set accum to accum + i
increment i by 1

4 Output: accum



Introduction and History

Examples of algorithms

Add the first n natural numbers: (i.e., compute,
∑n

i=1 i)

Algorithm

1 Input: n
2 Set accum to 0 and i to 1
3 while i ≤ n

set accum to accum + i
increment i by 1

4 Output: accum



Introduction and History

Examples of procedures that aren’t algorithms

Calculate the area of a circle of radius r:
1 Input: r
2 set variable area to πr2

3 Output: area

Observe that π is exact!
Find the nth prime number.

1 Input: n
2 Generate a list of all prime numbers (p1, p2, . . .).
3 Sort that list.
4 Select the nth item in that list (pn)
5 Output: pn



Introduction and History

A brief history of computing: calculators I

Remark: Calculators at the time lack two fundamental
characteristics that computers have:

A component that store information in machine readable
form (memory).

Programmable: An algorithm can be provided in advance
to solve some problem.

(1) ∼ 1622: Slide rule.

(2) The Pascaline: a mechanical calculator built by Blaise
Pascal. It is able to do + and −.

(3) Around 1674 Leibnitz constructed what was called the
Leibnitz wheel. The device was able to add, substract,
multiply, and divide.



Introduction and History

A brief history of computing: calculators II

(4) In order to automate the weaving process, J. Jacquard
design and built a machine that had the two characteristics
described above.

(5) Around 1823 C. Babbage built a machine called the
difference engine. The device was able to add, substract,
multiply, divide, and solve polynomial equations. It had
the following components: mill (ALU), store (memory),
operator (processor, it was actually a human), and output
(I/O).



Introduction and History

A brief history of computing: calculators III

(6) Circa 1890 H. Hollerith was a statistician working at the
U.S. Census Bureau. At that time he designed and
constructed a machine that could count, tally, and sort. It
had all the components of Babbage’s Analytic Engine, but
still it was no general purpose computer. Later on,
Hollerith left the Census Bureau and founded a company
that in the 1920’s became IBM.

(7) In 1944 Prof. H. Aiken completed the construction of
machine designed by him (the project was funded by the
U.S. Navy and IBM). It was called Mark I and this was a
general-purpose electromechanical programmable
computer. First computer to use the binary number
system.



Introduction and History

A brief history of computing: calculators IV

(8) The first fully electronic general-purpose programmable
computer was completed in 1946. It was named ENIAC
(Electronic Numerical Integrator and Calculator) The
machine was designed by J. Machly and J.P. Eckert from
the University of Pennsylvania. The project was funded by
that university and the U.S. Army.

(9) Other early examples of computing systems include:
Atansoff-Berry Computer (ABC system), which was
designed to solve systems of linear equations.
Colossus: A computer designed in the U.K. by A. Turing
and his team around 1943. The purpose of rhe computer
was to crack the German Enigma Code. This project was
shroud in secrecy until not so many years ago.



Introduction and History

A brief history of computing: calculators V

In Germany the Nazis funded the design and construction
of a device akin to ENIAC. It was called Z1, and it was
designed by K. Zuse.



Introduction and History

A brief history of computing: computers

The aforementioned general-purpose computers didn’t follow a
computing model proposed by Von Neumann. This model is
now called the Von Neumann Architecture. The model
proposed that not only the data, but also the instructions to be
executed by the machine were stored in memory. Von Neumann
invented programming as is known today (more on this later).
(10) In 1951 Von Neumann and his team implemented his

model. The machine they built was named EDVAC. The
commercial version of it was called UNIVAC I.



Introduction and History

A brief history of computing: Modern era of computing

(11) First generation: 1950-1957. This is the period of machines
like UNIVAC I and IBM 701. They were fully electronic
general-purpose programmable computers, but its circuitry
was made using vacuum tubes.

(12) Second generation: 1957-1965. This period saw the
appearance of solid-state devices like the transistor. Also,
the first high-level programming languages: FORTRAN
and Cobol were developed in that period.



Introduction and History

A brief history of computing: Modern era of computing

(13) Third generation: 1965-1975. In this period appears the
integrated circuit. Thus, the circuitry can be minaturized
and mass produced by photographically etching the the
circuit into a silicon waffer. From computers that filled
whole rooms, the computer became a desk-size object. The
first mini-computer was born: PDP-1 by DEC.

(14) Fouth generation: 1975-1985. Advances in integrated
circuit technology lead to the appearance of the first
microcomputer. Thus, desk-size minicomputers became a
desktop computer. The first microcomputer available was
the Altair 8800 in January 1975. This period also saw the
appearance of the first computer networks and of the email
as an application. GUI’s are also developed during this
period.



Introduction and History

A brief history of computing: Modern era of computing

(15) Fifth generation: 1985-?. A period in which we have:
Massive parallel processing capable of millions of operations
per second. E.g. top supercomputer in the world is
Tianhe-2 (located in China) has a 3,120,000 cores and has a
performance of 33862.7 TFlops (more than 1 PetaFlop).
Smartphone revolution.
The Internet: integrated global communications.
Massive storage devices.
Wireless data communication.



Introduction and History

References I

Donald D. Knuth.
The art of computer programming. Volume 1: Fundamental
Algorithms.
Third edition. Addison-Wesley, 1997.

G. Michael Schneider and Judith Gersting.
An Invitation to Computer Science: C++ Version.
4th Edition. Thomson: Course Technology, 2006

James L. Hein
Dicrete Structures, Logic, and Computability
Second edition. 2002.


