
Data Structures

Introduction to Data Structures

Aniel Nieves-González

Institute of Statistics

Spring 2014

Data Structures

Introduction

Computer programs operate over “tables” of information.
The information isn’t stored as an amorphous mass of
numerical values, but they involve important structural
relationships between the data elements.
Some algorithms to solve specific problems (e.g. sorting)
depend on the structural relation between the data
elements, i.e. on how the data elements are stored.
Each data stuctures is asociated to a series of operations
over the given structure.
We’ll talk about some fundamental data structures that are
present either explicitly or implicitly in modern computer
systems and high-level programming languages.

Data Structures

Linear lists

1 A linear list is a sequence of n ≥ 0 nodes
X[1], X[2], . . . , X[n].

2 Typical operations over the linear list are:

1 Gain access to the kth node.
2 Delete kth node.
3 Insert a node just before or after the kth node.

3 In general linear list may or may not be stored
consecutively inside the computer system. For example
consider one-dimensional array vs. a linked list (more on
this later).

4 The item at each node may or may not be of the same type
(more on this later).

Data Structures

Linear lists

1 A linear list is a sequence of n ≥ 0 nodes
X[1], X[2], . . . , X[n].

2 Typical operations over the linear list are:

1 Gain access to the kth node.
2 Delete kth node.
3 Insert a node just before or after the kth node.

3 In general linear list may or may not be stored
consecutively inside the computer system. For example
consider one-dimensional array vs. a linked list (more on
this later).

4 The item at each node may or may not be of the same type
(more on this later).

Data Structures

Linear lists

1 A linear list is a sequence of n ≥ 0 nodes
X[1], X[2], . . . , X[n].

2 Typical operations over the linear list are:
1 Gain access to the kth node.

2 Delete kth node.
3 Insert a node just before or after the kth node.

3 In general linear list may or may not be stored
consecutively inside the computer system. For example
consider one-dimensional array vs. a linked list (more on
this later).

4 The item at each node may or may not be of the same type
(more on this later).

Data Structures

Linear lists

1 A linear list is a sequence of n ≥ 0 nodes
X[1], X[2], . . . , X[n].

2 Typical operations over the linear list are:
1 Gain access to the kth node.
2 Delete kth node.

3 Insert a node just before or after the kth node.

3 In general linear list may or may not be stored
consecutively inside the computer system. For example
consider one-dimensional array vs. a linked list (more on
this later).

4 The item at each node may or may not be of the same type
(more on this later).

Data Structures

Linear lists

1 A linear list is a sequence of n ≥ 0 nodes
X[1], X[2], . . . , X[n].

2 Typical operations over the linear list are:
1 Gain access to the kth node.
2 Delete kth node.
3 Insert a node just before or after the kth node.

3 In general linear list may or may not be stored
consecutively inside the computer system. For example
consider one-dimensional array vs. a linked list (more on
this later).

4 The item at each node may or may not be of the same type
(more on this later).

Data Structures

Linear lists

1 A linear list is a sequence of n ≥ 0 nodes
X[1], X[2], . . . , X[n].

2 Typical operations over the linear list are:
1 Gain access to the kth node.
2 Delete kth node.
3 Insert a node just before or after the kth node.

3 In general linear list may or may not be stored
consecutively inside the computer system. For example
consider one-dimensional array vs. a linked list (more on
this later).

4 The item at each node may or may not be of the same type
(more on this later).

Data Structures

Linear lists

1 A linear list is a sequence of n ≥ 0 nodes
X[1], X[2], . . . , X[n].

2 Typical operations over the linear list are:
1 Gain access to the kth node.
2 Delete kth node.
3 Insert a node just before or after the kth node.

3 In general linear list may or may not be stored
consecutively inside the computer system. For example
consider one-dimensional array vs. a linked list (more on
this later).

4 The item at each node may or may not be of the same type
(more on this later).

Data Structures

Linear lists

There are linear list in which the typical operations occur at the
first or last node. They occur so frequently in applications that
they have special names.

A stack is a linear list in which all typical operations occur
at one end of the list (last-in-first-out, LIFO).

A queue is a linear list in which all insertions are made at
one end of the list; all access and deletions at the other end
(first-in-first-out, FIFO).
A dequeue (“double-ended queue”) is a linear list in which
all typical operations occur at the ends of the list.

Data Structures

Linear lists

There are linear list in which the typical operations occur at the
first or last node. They occur so frequently in applications that
they have special names.

A stack is a linear list in which all typical operations occur
at one end of the list (last-in-first-out, LIFO).
A queue is a linear list in which all insertions are made at
one end of the list; all access and deletions at the other end
(first-in-first-out, FIFO).

A dequeue (“double-ended queue”) is a linear list in which
all typical operations occur at the ends of the list.

Data Structures

Linear lists

There are linear list in which the typical operations occur at the
first or last node. They occur so frequently in applications that
they have special names.

A stack is a linear list in which all typical operations occur
at one end of the list (last-in-first-out, LIFO).
A queue is a linear list in which all insertions are made at
one end of the list; all access and deletions at the other end
(first-in-first-out, FIFO).
A dequeue (“double-ended queue”) is a linear list in which
all typical operations occur at the ends of the list.

Data Structures

Linear lists: sequential allocation I

The simplest way to store a linear list inside a computer is to
store the nodes in consecutive locations, one node after another.
This is sequential allocation. Moreover, we can also restrict our
linear list to store elements of the same kind (type). This lead
us to:

A one-dimensional array is a linear list in which the
allocation of the elements is sequential and all elements are
of the same type. For example: let X be a list and j ∈ N

address(X[j + 1]) = address(X[j]) + c

address(X[j]) = L0 + cj

where c is the number of bytes per node and L0 is a
constant base address (starting address).

Data Structures

Linear lists: sequential allocation II

Mathematically a one-dimensional array can be view as an
n-tuple.

The idea of a one dimensional array can be generalized to n
dimensions.

A 2-dimensional array is like a matrix. For example the
m× n matrix A

A =

A[1, 1] A[1, 2] . . . A[1, n]
A[2, 1] A[2, 2] . . . A[2, n]

...
...

...
A[m, 1] A[m, 2] . . . A[m, n]

Observe that each node A[i, j] belongs to two linear lists.

Data Structures

Linear lists: sequential allocation III

The sequential allocation scheme for a 2-dimensional array
is analog to the scheme for a one-dimensional array albeit
more complicated. for example:

address(A[i, j]) = a0 + a1i + a2j

where a0, a1, and a2 are constants.

Observe that although the sequetial allocation is easier to
understand it present some challenges to the machine
(operating system) at the moment of defining arrays and
doing data transfers. What is the main challenge?

Data Structures

Linear lists: Linked allocation

Instead of keeping a linear list in sequential memory locations,
we can use a more flexible scheme in which each node contains
a datum and a link to the next node of the list. For example a
simple linked list is:

Item 1 Item 2 Item 3 NULL

There are more complicated variations such as double linked
lists, circular linked lists etc.

Data Structures

Nonlinear Data Structures: Trees

The tree is an important nonlinear data structures that arise in
computer algorithms. A tree structure means that there is a
branching relationship between nodes. Formally, we define a
tree as follows.

Definition (Tree)

Let T be a nonempty finite set of nodes such that:
1 There is a specially designated node called the root of the

tree, root(T).
2 The remaining nodes (excluding the root) are partitioned

into m ≥ 0 disjoint sets T1, . . . , Tm, and each of these sets
is in turn a tree. The trees T1, . . . , Tm are called subtrees of
the root.

Observe that the definition is recursive (more on this later).

Data Structures

Nonlinear Data Structures: Trees

A few example of trees are:

Data Structures

Nonlinear Data Structures: Trees I

Observe the following:

1 The number of subtrees of a node is the degree of that
node.

2 A node with degree zero is called a leaf.

3 Each root is said to be the parent of the roots of its
subtrees. The roots of such subtrees are called siblings.
The siblings are the children of their parent.

4 Tree structures can be represented graphically in other
ways that bear no resemblance to actual trees.

5 In a binary tree each node has at most two subtrees and
when only one subtree is present we distinguish between
left and right subtree.

Data Structures

Nonlinear Data Structures: Trees II

6 An equivalent definition of tree uses terminology from
graph theory.

7 Many algorithms make use of the tree data structure to
solve specific problems, in particular, sorting. For example
the following sorting algorithms have the virtue that are
efficient in terms of running time:

1 Binary tree sort.
2 Heap sort.
3 Quick sort.

Data Structures

An heterogeneous container: “the struct”

With the exception of the n-dimensional array the items
contained in the above mentioned data structures may or may
not be of the same type.

By definition, the elements n-dimensional array are of the
same type.
In many programming languages it is possible to define
“containers” that hold items of different type.

In C and MATLAB the struc can hold data of different
type.
In MATLAB the cell array can hold data of different type.
In R the list and data frame can hold data of different type.

Data Structures

Basic Data structures in R I

All objects in R have some basic data types, or modes in R
parlance, which are: numeric, character, logical, list, and
function. These modes or types indicate how the object is
stored in memory. The mode function give us that information.
For example, mode(5) should return numeric as the result.
mode(’5’) should return. . .
Here a some of the basic data structures that are defined in R.

1 Vectors.
Vectors are homogeneous, i.e., all elements have the same
mode. Moreover vectors are indexed by position as
one-dimensional arrays. For example v[3] returns third
element of v.
Vectors can be indexed by multiple position, returning a
vector. For example v[2 : 3] and v[c(2, 3)] return 2nd and
3rd element of v.

Data Structures

Basic Data structures in R II

Vector elements can be named using the name function and
then the elements can be selected by name. As an exercise
issue the following commands: x = c(2, 3, 4)
names(x) = c(”A”, ”B”, ”C”)
Constants and atomic variables or scalars are viewed in R
as vectors with one element.

2 Lists (the analog of lists in other programming languages
are hash or lookup tables).

Lists are heterogeneous, i.e., list elements can be of different
types. Moreover lists can contain lists and other structured
objects such as data frames.
Lists can be indexed by position or multiple position akin to
vectors. For example L[[2]] refers to the 2nd element of list
L. Observe the double brackets.

Data Structures

Basic Data structures in R III

Similar to vectors, lists elements can be named. Thus,
L[[Tito]] and L$Tito both refer to an element named
“Tito”.

3 Matrices: In R a matrix is a vector that has the attribute
of dim set from NULL to some numeric value. For example,
the instructions A = 1 : 4, dim(A) = c(2, 2) returns

1 3
2 4

one can also use the function matrix to create a matrix.
Matrices can also be constructed from lists.

4 n-dimensional arrays. They are a generalization of
matrices. As an exercise issue the two commands:
B = 1 : 12 and dim = c(2, 3, 2).

Data Structures

Basic Data structures in R IV

5 Data frame: Data frames are intended to mimic a data
set. It is a rectangular data structure but not implemented
with matrices but it is rather a list. The function
“data.frame” can be used to create data frames.

A data frame is a list whose elements are vectors. Those
vectors are the columns of the data frame.
The vectors (columns) must have the same length.
The columns must have names.
One can use list operations such as Dframe[[i]] and
Dframe$Tito to extract columns.
One can use matrix-like notation for accessing content:
Dframe[i, j], Dframe[i,], or Dframe[, j].

6 Factors are another data structure (more on this later).

Data Structures

References I

Donald D. Knuth.
The art of computer programming. Volume 1: Fundamental
Algorithms.
Third edition. Addison-Wesley, 1997.

Paul Teetor
R cookbook
O’Reilly, First edition 2011.

