
Programming languages

Programming Languages

Aniel Nieves-González

Institute of Statistics

Spring 2014



Programming languages

“About 1,000 instructions is a resonable upper limit
for the complexity of problems now envisioned.”

—Herman Goldstine and John Von Neumann (1946)



Programming languages

Von Neumann Architecture

Modern computers with the exception of quantum computers
and parallel computer systems (“supercomputers”) follow a
computer architecture developed by Von Neumann in the
1940’s. The Von Neumann architecture can be illustrated as:

I/O
devices

Memory
(RAM)

ALU

Control U.

Processor (CPU)

Data Bus



Programming languages

Von Neumann Architecture

The model proposed that not only the data, but also the
instructions to be executed by the machine were stored in
memory. Von Neumann invented programming as is known
today.



Programming languages

Von Neumann Architecture

The Von Neumann architecture is a design that comprises:
A memory unit that stores data and instructions to be
executed. It consists of the random-access memory (RAM),
which can be thought as an array of cells each with a
unique address and with an access time that is uniform for
all cells.
Input/Output (I/O) unit: it consists of devices such as
display, keyboard, mass data storage (e.g., hard drive), etc.
The processor consists of registers (local storage) and two
subunits:

Control unit (CU): it directs the operations of the
processor, i.e., it directs the execution of the instructions to
be executed (program).
Arithmetic logic unit (ALU): it performs arithmetic and
logical operations.



Programming languages

Von Neumann Architecture: the instruction cycle

The processing unit executes the following cycle:
1 Fetch an instruction from memory. The instruction is

loaded into a register from a memory address currently
stored in a program counter. The program counter is
updated to the address of the next instruction.

2 Decode the instruction. Here the CU determines what
instruction is going to be executed. Note that each CPU or
CPU family has a finite set of instructions, and such set is
not unique (recall discussion on Turing Machines).

3 Read effective address. Any data needed to execute the
instruction is loaded from memory.

4 Execute the instruction. The ALU might be involved in
this part

5 Go to step 1.



Programming languages

Programming languages

In computer systems, data and instructions are represented
in numeric form.
Recall that the computer system has a finite amount of
resources (memory, etc). Thus, even storing information,
can introduce errors.

Sound: sound waves are sampled (discretized) and
amplitude and frequency information is stored (e.g. wav,
mp3, etc.).
Image:
Characters are encoded in numeric form, e.g., ASCII, and
UNICODE.
Integers: a finite numbers of integers can be represented.
For example, signed and unsigned representation.
Real numbers: a finite numbers of real numbers can be
represented using fixed point or floating point
representation.



Programming languages

Programming languages

In terms of hardware a computer system is a collection of
electronic devices which are composed of electronic
circuitry.
The binary number system is used to represent data and
instructions.

In this system all numbers are represented with {0, 1}.
The usage of the binary system brings reliability to the
computer systems because in that case the circuitry that
comprises the electronic devices only represents two states:
on and off ({0, 1}).



Programming languages

Programming languages

A a programming language is a formal language design to
communicate instructions to a computer. Programming
languages are used to write programs, which express
(implement) algorithms.

1 A high-level language provides strong abstraction from the
details of a computing system. For example: FORTRAN,
Cobol, C, Java, SQL, MATLAB, R, etc.

2 A low-level language provides little abstraction from the
inner workings of a computer system. For example: Any
assembly language.

Ultimately, any programming language is translated into
machine language (machine instructions), which are in binary
form. Loosely speaking that translation process is called
compilation or interpretation.



Programming languages

Programming languages: brief history I

This is not a comprehensive list:

1 Short Code in 1949.

2 Fortran (mid 1950’s). The name stands for formula
translation. It was originally developed to tackle
mathematical problems and is still used today in the
scientific community.

3 LISP (1958). The name stands for LISt Processing. It is
still used today in certain filds of computer science.

4 COBOL (1959). The name stands for COmmon
Business-Oriented Language. It is still used in business,
and administrative systems in companies, in particular in
legacy applications.



Programming languages

Programming languages: brief history II

5 ALGOL 60 (late 1950’s). The name stands for
ALGOrithmic Language. An effort to standarized
programming languages.

6 C (1969-1973). Still used today to program applications,
but it was originally intended to be a system programming
languages, i.e., to write operating system software.

7 Many of the ideas observed in modern programming
languages originated in the 1970’s.

8 C++ (1980). C with classes.
9 MATLAB (1984). The name stands for MAtrix

LABoratory. It is a language and computing environment
intended for numerical computing (in contrast of Maple
which is focus on symbolic computing). The source of the
MATLAB environment is written in C.



Programming languages

Programming languages: brief history III

10 Python (1991). It is a language design to improve code
readability. In contrast to MATLAB or R and similar to
the others it is a general purpose programming language.

11 Visual Basic (1991). Derived from BASIC by Microsoft. It
was intended to be a language easy to learn and use.

12 R (1993). Based on language S. It is a language and
computing environment intended for statistical computing
and graphics. The source of the R environment is written
primarily in C and Fortran.

13 Java (1995). It is a general purpose programming language,
developed, as many languages of the 1990’s, having Internet
applications in mind. The sintax is similar to C, but the
programs written in it are not compiled, but interpreted.



Programming languages

References I

Donald D. Knuth.
The art of computer programming. Volume 1: Fundamental
Algorithms.
Third edition. Addison-Wesley, 1997.

G. Michael Schneider and Judith Gersting.
An Invitation to Computer Science: C++ Version.
4th Edition. Thomson: Course Technology, 2006

James L. Hein
Dicrete Structures, Logic, and Computability
Second edition. 2002.


