Chapter 5

Moore's Law: Fast, Cheap Computing and What It Means for the Manager

5
 flatworld Some Definitions

Moore's Law: Chip performance per dollar doubles every eighteen months Microprocessor: The part of the computer that executes the instructions of a computer program

- Random-access memory (RAM): The fast, chip-based volatile storage in a computing device
- Volatile memory: Storage (such as RAM chips) that is wiped clean when power is cut off from a device
- Nonvolatile memory: Storage that retains data even when powered down (such as flash memory, hard disk, or DVD storage)

flatworld Some Definitions

Flash memory: Nonvolatile, chip-based storage, often used in mobile phones, cameras, and MP3 players

- Solid state electronics: Semiconductor-based devices
- Semiconductors: A substance such as silicon dioxide used inside most computer chips that is capable of enabling as well as inhibiting the flow of electricity
- Optical fiber line: A high-speed glass or plastic-lined networking cable used in telecommunications
flatworld

Figure 5.1 - Advancing Rates of Technology (Silicon, Storage, Telecom)

flatworld Get Out Your Crystal Ball

When technology gets cheap, price elasticity kicks in
The five waves of computing over the previous five decades:

- 1960s - Mainframe computers
- 1970s - Minicomputers
- 1980s - PCs
- 1990s - Internet computing
- Present - Ubiquitous computing

Ambient Devices and the Fifth Wave

Ambient Devices is a "fifth wave" firm that's embedding computing and communications devices into everyday products to make them more useful and smarter

- Ambient's ability to pull off this little miracle is evidence of how quickly new markets, spawned by Moore's Law, can come into being
- Ambient has expanded the product line to several low-cost appliances designed to provide information at a glance

flatworld Get Out Your Crystal Ball

One of the most agile surfers of this fifth wave is Apple, Inc.

- A firm with a product line that is now so broad that in January 2007, it dropped the word "Computer" from its name
- The high-end iPod increased song capacity by forty times in six years while dropping in cost by fifty dollars
- The change in hard drive prices isn't directly part of Moore's Law, the faster and cheaper phenomenon applies to storage
- Example: Amazon

Bits and Bytes

Computers express data as bits that are either one or zero
Eight bits form a byte

- A kilobyte refers to roughly a thousand bytes, or a thousand characters
- Megabyte = 1 million
- Gigabyte = 1 billion
- Terabyte = 1 trillion
- Petabyte = 1 quadrillion
- Exabyte = 1 quintillion bytes

flatworld Bits and Bytes

Storage is listed in bytes

- Telecommunication capacity (bandwidth) is listed in bits per second (bps)

flatworld
 KNOWLEDGE
 Table 5.3 - Bytes Defined

	Managerial Definition	Exact Amount	To Put It in Perspective
1 Byte	One keyboard character	8 bits	1 letter or number = 1 byte
1 Kilobyte (KB)	One thousand bytes	2^{10} bytes	1 typewritten page $=2 \mathrm{~KB}$
			1 digital book (Kindle) = approx. 500-800 KB
1 Megabyte (MB)	One million bytes	2^{20} bytes	1 digital photo (7 megapixels) $=1.3 \mathrm{MB}$
			$1 \mathrm{MP3}$ song = approx. 3 MB
			$1 \mathrm{CD}=$ approx. 700 MB
1 Gigabyte (GB)	One billion bytes	2^{30} bytes	1 DVD movie = approx. 4.7 GB
			1 Blu-ray movie = approx. 25 GB

flatworld
KNOWLEDGE

Table 5.3 - Bytes Defined

	Managerial Definition	Exact Amount	To Put It in Perspective
1 Terabyte (TB)	One trillion bytes	2^{40} bytes	Printed collection of the Library of Congress = 20 TB
1 Petabyte (PB)	One quadrillion bytes	2^{50} bytes	eBay data warehouse (2010) $=10$ PBC. Monash, "eBay Followup-Greenplum Out, Teradata > 10 Petabytes, Hadoop Has Some Value, and More," October 6, 2010. Note eBay plans to increase this value 2.5 times by the end of 2011.
1 Exabyte (EB)	One quintillion bytes	2^{60} bytes	
1 Zettabyte (ZB)	One sextillion bytes	2^{70} bytes	Amount of data consumed by U.S. households in $2008=3.6 \mathrm{ZB}$

flatworld Get Out Your Crystal Ball

If you are producing products with a significant chip-based component, the chips inside that product rapidly fall in value

- It is great when it makes your product cheaper and opens up new markets for your firm
- It can be deadly if you overproduce and have excess inventory sitting on shelves for long periods of time
- Moore's Law impacts mundane management tasks too

5
 flatworld
 KNOWLEDGE
 The Death of Moore's Law?

Moore's Law is possible because the distance between the pathways inside silicon chips gets smaller with each successive generation

- Since the pathways are closer together, electrons travel shorter distances
- If electrons travel half the distance to make a calculation, that means the chip is twice as fast
- This shrinking can't go on forever
- Three interrelated forces-size, heat, and power-threaten to slow down Moore's Law's advance

5
 flatworld The Death of Moore's Law?

Microsoft, Yahoo!, and Google have all built massive data centers in the Pacific Northwest in order to benefit from cheap hydroelectric power

- The chief eco officer at Sun Microsystems has claimed that computers draw four to five percent of the world's power
- Google's chief technology officer has said that the firm spends more to power its servers than the cost of the servers themselves
- Chips can't get smaller forever because chip pathways can't be shorter than a single molecule and actual physical limit may be higher

58
 flatworld Buying Time

Multicore microprocessors: Microprocessors with two or more (typically lower power) calculating processor cores on the same piece of silicon

- For many applications, the multicore chips will outperform a single speedy chip, while running cooler and drawing less power
- Multicore processors are now mainstream
- Today, most PCs and laptops sold have at least a two-core (dual-core) processor
- Intel has demonstrated chips with upwards of fifty cores

Multicore processors can run older software written for single-brain chips

- They usually do this by using only one core at a time
- In order to take full advantage of multicore chips, applications need to be rewritten to split up tasks so that smaller portions of a problem are executed simultaneously inside each core
- Writing code for execution in a multicore environment is challenging

flatworld Buying Time

Another approach that's breathing more life into Moore's Law moves chips from being paper-flat devices to built-up 3-D affairs

- By building up as well as out, firms are radically boosting speed and efficiency of chips

Bringing Brains Together: Supercomputing and Grid Computing

Supercomputers: Computers that are among the fastest of any in the world at the time of their introduction

- Supercomputing was once the domain of governments and high-end research labs
- Modern supercomputing is done via massively parallel processing
- Massively parallel: Computers designed with many microprocessors that work together, simultaneously, to solve problems

Bringing Brains Together: Supercomputing and Grid Computing

Grid computing: A type of computing that uses special software to enable several computers to work together on a common problem as if they were a massively parallel supercomputer

- Multicore, massively parallel, and grid computing are all related in that each attempts to lash together multiple computing devices so that they can work together to solve problems

flatworld E-waste: The Dark Side of Moore's Law

The dark side to Moore's Law is discarded tech junk, referred to as electronic waste or e-waste

Recycling is a solution to the problem

flatworld E-waste: The Dark Side of Moore's Law

There is a disconnect between consumers and managers who want to do good and those efforts that are actually doing good

- The following points show how difficult addressing this problem will be
- The complexities of the modern value chain
- The vagaries of international law
- The nefarious actions of those willing to put profits above principle
- The process of recycling is extremely labor intensive
- Disregard of ethical recycling imperatives can tarnish a brand

flatworld E-waste: The Dark Side of Moore's Law

E-waste: Discarded, obsolete technology

- It contains mainstream recyclable materials like plastics and aluminum
- It contains small bits of increasingly valuable metals such as silver, platinum, and copper
- Recycling of e-waste is extremely labor intensive
- Managers must consider and plan for the waste created by their products, services, and technology used by the organization

